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Abstract: 
Despite longstanding concerns about the under-representation of women in science, few studies have 
approached this issue from the perspective of the changing organization of work in science. Past studies 
have documented a trend toward increased bureaucratization of scientific work, marked by the growing 
number of scientists specialized in supporting roles. Using data on publishing careers of scientists from 
1951 to 2012 from selected natural and social science fields, we show that these “supporting” career-type 
scientists have been traditionally associated with women. While we find that the gender difference in 
career types has converged over the past few decades, this convergence has been largely driven by an 
increasing share of male scientists taking on supporting roles. We also find that historical gender inequality 
in career attrition in science is largely attributable to women traditionally occupying “supporting” roles, 
which suggests that examining work organization is crucial for understanding gender inequality in science. 
Lastly, using survival analysis, we find that both female “lead” and “supporting” career types face higher 
attrition rates than their male counterparts. Meanwhile, we find that “lead” career types yield fewer 
advantages for women compared to men in natural sciences, whereas “supporting” career types are 
particularly disadvantageous for women in social sciences. Our findings provide science policymakers 
with insights necessary to tailor support for women scientists by considering the nuances of their 
production roles in science.  
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Introduction: 
 
The under-representation of women in science is a longstanding issue (1-5). Women not only encounter 
more structural barriers when entering science (4, 6-8), but they are also more likely to leave the field and 
pursue non-scientific careers (1, 3, 9). While many studies have highlighted important factors that are 
attributed to persistent gender inequality in science, few studies have examined this issue from the 
perspective of the changing organization of work in science. As science evolved into a more collaborative, 
team-based endeavor (10, 11), scientific work became increasingly bureaucratized, with increasing use of 
hierarchy, standardization, and division of labor (12-14) in the production of knowledge. One important 
outcome of this trend is the rise of a category of scientists whose main role is to support the lead scientists 
in their labs and projects (15-18). Despite science’s increasing reliance on these supporting scientists, 
studies have shown immense inequalities between lead and supporting scientists (16, 19).  
 
Given the increasing division between the lead and supporting roles contributing to the career inequalities 
in science, we argue that the well-documented gender difference in scientific careers should be examined 
from the perspective of the changing organization of work in science. We first empirically examine 
whether women are more likely to spend their publishing careers as supporting scientists and, if so, 
whether this has changed over time. History of science provides much evidence of the confined and 
often marginalized role of women in science, if acknowledged at all. Well-known historical cases, such 
as Madame Lavoisier (5) and, more recently, Rosalind Franklin (20), highlight the struggles faced by 
women scientists who were perceived by their contemporaries mainly as supporting associates rather than 
independent scientists in their rights. We then examine if gender differences in career types (lead vs. 
supporting scientists) account for historical gender inequalities in career longevity. While previous 
studies have pointed out various factors contributing to higher career attrition of women, we focus on the 
organizational aspect by questioning whether women’s historical confinement to a less prestigious 
production role in science contributed to higher career attrition for women. In our final analysis, we 
investigate the potential differential effects of supporting roles on attrition rates between women 
and men. Essentially, while our first research question examines whether the “supporting role” is 
gendered, this question asks whether the “supporting penalty” is gendered. Understanding the differential 
attrition penalty is crucial as it allows policymakers with insights necessary to tailor support for women 
scientists by considering the nuances of their career types. 
 
To address these questions, we construct scientists’ comprehensive publishing career data from a large-
scale bibliometric dataset, SciSciNet (21) (SM A.2), specifically focusing on selected fields from natural 
sciences (Biology and Chemistry) and social sciences (Psychology and Sociology). In total, our 
constructed data covers 658,049 US-affiliated authors who entered publishing careers from 1951 to 2012. 
By identifying each career type (“lead” vs. “supporting”) (SM A.4) and name-inferred binary gender of 
scientists (SM A.3), we examine the interplay between career type and gender and how they explain 
inequality in career longevity. To measure the career type of a scientist, we classify each author into one 
of two types: “lead” and “supporting” career types (17, 19). Lead career types are authors who, at some 
point in their careers, have produced at least one paper as a first author. Meanwhile, supporting career 
types are the authors who, at no point in their careers, appear in a publication as a first author. We validated 
this measure against a subset of the bibliometric dataset, which provides contributorship statements and 
finds that supporting career types are more likely to perform tasks that are labor-intensive (SM A4.2, Fig. 
6D,H,L), which is consistent with the conceptual description of the role of supporting scientists in the 
literature (16, 18).  
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Results:  
 
Gender Trends in Career Type: A Historical Perspective 
 
We first report the share of scientists among their cohort who spend their careers as lead career types, 
defined as those who have published at least one first-author paper in their publishing careers (Fig. 1A-
D). Our findings show that in natural sciences (chemistry and biology), the “lead” career types have been 
traditionally associated with male scientists, thus corroborating the long-standing view that women were 
associated with supporting roles in the production of science (5, 22). For instance, during the first decade 
of the 1950s, only slightly more than half (52.6%) of female scientists in chemistry held the position of 
lead career types, compared to 88.3% of their male counterparts (Fig. 1B). Similarly, in biology, only 
67.4% of women were identified as lead career types, as opposed to 87.1% of men (Fig. 1A). It is worth 
noting that when Rosalind Franklin was undertaking her pioneering research on uncovering the structure 
of DNA in the early 1950s, the production of science was heavily gendered, such that women scientists 
have disproportionately carried out the labor-intensive tasks in natural sciences. Interestingly, our analysis 
reveals a contrasting trend within the social sciences, where the division of labor between women and men 
does not reflect the same level of gender disparity as observed in the natural sciences (Fig. 1C,D). While 
we did notice gender discrepancies within psychology and sociology throughout our observation periods, 
these differences were not as pronounced as those observed from the natural sciences.  
 
Secondly, we find a striking trend of convergence in career type (lead vs. supporting) between men and 
women in natural sciences. For example, by the 2010-2012 period, the gender difference in the share of 
the lead career type significantly narrowed, with 64.6% of women in chemistry identified as lead career 
types compared to 67.0% of men (Fig. 1B). In biology, the share of lead career type is around 62.3% for 
women and 63.7% for men (Fig. 1A). While there are still measurable differences between men and 
women in these fields during this period (t ≈3.428 in chemistry, t ≈ 2.092 in biology), our findings clearly 
show a narrowing gender gap over time (Fig. 1A,B). Interestingly, this narrowing trend was not mainly 
driven by an increase in women occupying lead positions but by a growing proportion of men occupying 
supporting roles. This suggests that the observed reduction in gender inequality in production roles in the 
natural sciences has been partly driven by a shift in the career paths of male scientists toward roles 
traditionally held by women. Our finding from the social sciences contrasts sharply with that of natural 
sciences, where the proportion of lead career types for women and men is decreasing in a parallel fashion 
(Fig. 1C,D).  
 
We now examine the publishing careers of scientists as it is a dimension where inequality has been 
observed and extensively researched. One of the key implications from the literature on the bureaucratic 
structuring of scientific work has been the notably shorter careers of supporting scientists (16, 19). On the 
other hand, a sociology of science literature has extensively examined gender disparities in scientific 
career science (9, 23, 24). We building on these insights to provide a novel perspective on gender 
inequality in science. We first report the average publishing career lengths for female and male scientists 
in chemistry, biology, psychology, and sociology, respectively (Fig. 1E-H). On average, women have 
shorter publishing career lengths than men in natural sciences (Fig. 1E,F). However, the narrowing gender 
gap in publishing career lengths in these fields mirrors the narrowing gap in career types in these fields. 
To further illustrate this connection, we report scatter plots that compare the gender gaps normalized by 
the proportion of lead career types on the x-axis and the ratio of average career lengths between female 
and male authors on the y-axis (Fig. 1I-L). For example, a ratio less than 1 implies that women are less 
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likely to be lead career types (vertical axis) or have shorter career lengths on average compared to men. 
Our model-free evidence from natural sciences (Fig. 1I,J) shows strong correlations between the variations 
in the career gaps and career longevity, suggesting that the diminishing gender gap in career types could 
be a contributing factor to the decrease in gender inequality observed in career longevity within the natural 
sciences.  
 
Historical Role of Career Type on Gender Inequality in Attrition 
 
To further investigate the role of career types on gender inequality, we use the Cox Proportional Hazard 
Model to estimate the attrition hazard as a function of gender as well as early career productivity, team 
size, and citation counts both with and without the inclusion of the career types (lead vs. supporting) 
variable (SM B.1). These models are estimated from the sample of 63 cohorts from 1951 to 2012 from 
Natural Sciences (Fig. 2A,C) and Social Sciences (Fig. 2B,D). The estimated coefficients for women, 
without the inclusion of the career-type variable, are depicted in blue. In contrast, the red dots represent 
the estimated coefficients for women from the model that includes the career type variable.  
 
In natural sciences, we find that gender inequality in career attrition has been decreasing over time, as 
shown by the decreasing hazard rate for women (see blue, Fig. 2A). However, after controlling for career 
types, the decrease in the gender gap is substantially attenuated (see red, Fig. 2A), which suggests that the 
career type might mediate the relationship between gender and career longevity in natural sciences. To 
formally examine the mediating effect of the career type, we ran a causal mediation analysis (25) (SM 
B.3) to estimate the proportion of the gender effect explained by its indirect effect via the career type (Fig. 
2C,D). The findings from natural sciences (Fig. 2C) suggest that since the latter half of the 20th century, a 
substantial proportion of the gender effect on career attrition has been mediated through career type. 
Interestingly, we also find that the proportion of the mediation effect has been decreasing over time in 
natural sciences (Fig, 2C). In sharp contrast, we do not observe any associations between career type and 
gender inequality in career attrition in social sciences (Fig. 2B,D). The level of gender inequality in career 
attrition is lower in these fields, and the historical pattern of inequality remains largely unchanged with 
the inclusion of the career type variable (Fig. 2B). Moreover, the causal mediation analysis shows that the 
career type hardly mediates the relationship between gender and career attrition (Fig. 2D).  
 
The Effects of Career Type on Gender-Specific Attrition 
 
Lastly, we employ survival analysis to examine how career type and gender together affect career attrition 
in science. We use the Cox proportional hazard model, which estimates relative hazard difference (SM 
B1). While the Cox proportional hazard model has an advantage in not assuming a specific survival 
function, the model assumes that hazard ratios between different groups are constant over time, which 
may be a strict assumption given the observed different empirical survival curves for lead and supporting 
career types in our sample (SM A.7, Fig.8). We thus complement our analysis with the Weibull-based 
accelerated failure time (AFT) model, which directly estimates the effects of the covariates on time to exit 
publishing careers (SM B2). To address the potential heterogeneities across individual scientists, we 
incorporate control variables representing the upper 90th percentile in three key early individual 
performances: the first 3 years of publication productivity (number of publications), the average number 
of first five-year citations (c5), and the average size of early collaborative teams. We present the regression 
results for the natural sciences (biology and chemistry) in Table 1 and the social sciences (psychology and 
sociology) in Table 2. 
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We first find that female scientists are positively associated with a greater hazard of leaving a publishing 
career in both natural and social sciences than men (Table. 1-2(1)). For example, in natural sciences, the 
hazard rate for female scientists is, on average, 14.1% (=1.141-1) greater than that of male scientists (Table. 
1(1)). We find this female penalty consistent even after controlling for early performances (Table. 1(2)) 
and also for the results from the AFT model, which directly estimates the exiting time (SM B5, Table 3). 
Meanwhile, we observe a less pronounced gender disparity in attrition within the social sciences; women 
exhibit a 5.6% higher hazard rate compared to men (Table. 2(1)). The observed gender disparities in career 
attrition align with our non-parametric estimates (SM A.7, Fig. 9), with the notable exception of the field 
of sociology. As evidenced by the prior study (19), we find that supporting career types face higher 
attrition risks across both natural and social sciences (Tables. 1-2 (3)). For instance, within the natural 
sciences, supporting career types experience an 83.7% (=1.837-1) increased hazard rate compared to their 
lead counterparts (Table 1(3)). Similarly, our finding from the AFT model shows that the expected 
survival time for supporting career types is only 52.2% of that for those in lead career types (SM B5, Table 
3(3)). The supporting penalty was more severe in social sciences, with supporting career types 
experiencing a 129.4% (=2.294-1) increased hazard rate (Table 2(3)) and exhibiting 41.8% of the expected 
survival time of the lead career types (SM B5, Table 7(3)).  
 
Next, we examine whether the career-type effect on attrition differs between women and men by including 
their interaction effect in our regression model (Tables. 1-2(4)). In natural sciences (Table. 1(4)), we find 
a negative interaction effect, suggesting that the effect of the “supporting” career type on attrition is 
relatively less severe for female scientists. For example, the attrition hazard for being supporting career 
types is around 4.6 percent (=1-0.954) less for women than men. In terms of expected survival time (SM 
B5, Table. 3(4)), we find that women in supporting career types have expected survival time with a factor 
of 1.067 of male supporting career types, suggesting that the expected career shortening from being 
supporting types is less severe for women than men. Interestingly, we find an opposite pattern in social 
sciences, such that women face a 9.2% (=1.092-1) greater hazard rate for being supporting career types 
than men (Table. 2(4)). Similarly, when considering the expected career duration, female supporting types 
have a survival time factor of 0.927 compared to male supporting types (SM B5, Table 7(4)). This 
indicates a more pronounced career shortening for women in supporting types compared to their male 
counterparts. Thus, within the natural sciences, the “supporting” career type appears to carry a relatively 
smaller penalty for women than for men. In contrast, the opposite pattern emerges within the social 
sciences, where the supporting career type tends to have a more detrimental effect on the career prospects 
of women.  
 
Lastly, we further compare supporting penalties by gender for the entire period (1951 to 2012) with that 
for the recent period (2000-2012). First, our main findings remain consistent even when we stratify our 
sample by field and different timeframes (SM B.5, Tables 2-25). However, we can further observe an 
interesting trend where these supporting penalties for women are also getting smaller over time (from 
0.954 to 0.919 for natural sciences and from 1.092 to 1.074 for social sciences both in the Cox model) and 
also where supporting penalties by gender in social sciences have been becoming closer to those in natural 
sciences although more slowly. For example, psychology, where scientists often conduct experiments as 
in natural sciences, shows 1.001 for the interaction term during 2000-2012, which is close to 0.927 in 
chemistry (SM B5). It is likely that natural sciences have a longer history of supporting positions than the 
social sciences (26) and that social sciences are following this changing nature observed earlier in natural 
sciences with a time lag. The evidence from running separate regression by cohort yields consistent results 
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with decreasing trends of interaction effects between gender and supporting career types, initially 
observed in the natural sciences (Fig. 3A) and subsequently in the social sciences (Fig. 3B).  
 
Discussion 

 
We first find that women were historically more likely to spend their careers as supporting scientists. 
However, we find this gap has been converging over time. Interestingly, and perhaps not in the desired 
direction, this convergence has been overwhelmingly driven by a decreasing share of lead career types 
(i.e., an increasing share of supporting career types) among men. Both male and female scientists are 
equally likely to take supporting roles now in science, making supporting roles less feminized than before. 
In terms of career lengths, women have shorter publishing careers than men in natural sciences. However, 
we find that the gender gap has been decreasing over time, and this gap became much narrower once we 
take account of their production role as measured by their career types. Thus, our evidence provides strong 
evidence that the existing gender inequality in scientific careers can partly be explained by the historically 
gendered division of labor in the production of science. While further research is needed to understand 
why this pattern is observed in natural sciences but not in social sciences, a potential explanation is the 
traditionally high level of teamwork associated with natural sciences (11), often leading to a more 
pronounced division of labor (26, 27), which is often intertwined with gendered patterns (28).  
 
Our survival analyses show that both female scientists and supporting scientists are more likely to leave 
publishing careers. However, the effect of the “supporting” career type on attrition is relatively less severe 
for female scientists than for male scientists in natural sciences, while the supporting career tends to have 
a more detrimental effect on the career prospects of women in social sciences. One possible explanation 
is that natural sciences have a longer history of supporting positions (26), and there have been efforts by 
research institutions to make supporting scientist careers more formalized and stabilized in the natural 
sciences (29). This standardization of supporting positions with the less feminization of supporting roles 
may have helped female supporting scientists in natural sciences become less stigmatized with a smaller 
penalty, while, for men, the supporting role makes them still stigmatized. Social sciences, with a shorter 
history of supporting positions, show the opposite pattern, with female supporting scientists having a 
larger penalty than male counterparts. 
 
The results of this study will help us understand gender inequality in science in the context of the evolving 
landscape of scientific work, which is characterized by extensive teamwork (10, 11) and a high division 
of labor, leading to specialized career paths (16, 19). Moreover, the results motivate a recent movement 
to stabilize supporting scientist careers as a policy to address gender inequality in science (29). Stabilizing 
this position will not only contribute to retaining female scientists traditionally in supporting roles but also 
contribute to reducing the exit of male scientists increasingly in supporting roles. Thus, policies designed 
to address gender differences in attrition in scientific publishing need to account for field differences and 
differential career tracks. In particular, the growth of supporting scientists suggests that understanding the 
intersection between role and gender may be increasingly important when designing programs such as 
NSF’s ADVANCE programs that are designed to improve the retention of female scientists (30).  
 
Data and Methods  
 
Our primary data source is SciSciNet (21), a comprehensive, meticulously curated, and open-source 
dataset comprising over 134 million scientific publications. The dataset is specifically tailored for research 
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in the science of science domain and provides essential measures to examine scientists’ publishing careers. 
For example, the dataset provides precomputed metrics that would otherwise require resource-intensive 
data processing and computations. We selected four fields from this dataset: chemistry, biology, 
psychology, and sociology. We selected these fields for several reasons. Firstly, chemistry and biology 
serve as representative fields of natural sciences, while psychology and sociology embody social sciences. 
The bureaucratization of scientific work is most evident in team-based science, where producing scientific 
knowledge involves formalization, specialization, and division of labor. These features are much more 
evident in natural sciences. In contrast, social sciences are much more closely aligned with the traditional 
“craft” scientific production model (15, 26, 31), thus offering a contrasting perspective in our research. 
Secondly, our selection was also influenced by the compatibility of authorship norms (32) within these 
fields with our method for categorizing lead versus supporting career types (see next parapgrah). For 
instance, our classification may not apply to mathematics and economics, where authorship order follows 
an alphabetical norm. Similarly, fields with hyper-authorship norms, like high-energy physics, may not 
effectively capture the specialized career trajectories using our method. Lastly, given that our study 
examines the historical changes in the production roles of scientists, with the time period going back to 
the 1950s, fields without sufficiently long histories were not considered.  
 
Following the previous method of classifying scientists by their production roles (17, 19), we categorize 
scientists into lead career types as those who have published at least one paper as first authors and 
supporting career types as scientists who have never had positions as first authors in their publishing 
careers (SM A.4) We provide evidence that this simple measure can effectively capture the essential 
features of the different production roles in science (SM A.4, Fig.6). We find that supporting career types 
are more likely to engage in labor-intensive tasks such as performing experiments, while lead career types 
are much more likely to undertake conceptual or abstract tasks or those related to resource allocation. 
Meanwhile, it is possible that lead career types have longer publishing careers because of the survival bias. 
However, our data shows that 90% of the lead career types have transited to this category within 5 years 
from their first publications (SM A.5, Fig.7), suggesting that our classification is stable across publishing 
careers.   
 
To construct comprehensive publishing careers of scientists from biology, chemistry, psychology and 
sociology, we first retrieved all authors who appear in the SciSciNet bibliographic records associated with 
the four selected fields. To ensure that our sample is comprised of true-field authors, we only include 
authors who have published over half of their papers in the focal fields. Given the primary argument that 
the bureaucratization of science is most relevant to the US context (SM A.2), we further refined our sample 
to include only those authors for whom at least half of their published papers indicate their affiliation as 
being located in the United States. The binary gender of the authors was inferred using data from SciSciNet. 
This dataset provides a probabilistic variable ranging from 0 (most male) to 1 (most female). We assigned 
authors with a probability range of [0, 0.1] as male and [0.9, 1] as female (SM. A.3). The proportion of 
authors whose gender was identified using this method varied across fields. We were able to infer the 
binary gender for 80.9% of authors in biology, 79.3% in chemistry, 90.0% in psychology, and 90.6% in 
sociology (SM A.3, Fig.2). Following previous studies (9, 19), we excluded “transient authors” from our 
study, which is defined as authors who have published fewer than two papers and those who have not 
produced papers in two or more periods. Our final dataset includes 62 cohorts of authors in four fields 
whose first publications were from 1951 to 2012. We consider authors to have exited their publishing 
careers, designating their last publication years as the dropout years if they did have any papers published 
during the 5 year period from 2017 to 2021. If authors have publication during 2017-2021, they were 
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right-censored in our study as of 2016. The final dataset includes 658,049 authors, with 186,360 from 
chemistry, 334,111 from biology, 116,346 from psychology, and 21,232 from sociology.  
 
We used two modeling frameworks for survival analysis. Firstly, we used the Cox Proportional Hazard 
Model due to its flexibility in handling survival data without making assumptions about the survival 
function. Given our discrete measurement of career length in years, we applied the Efron method to adjust 
for ties. To address the strict assumption about the constant hazards over time, we also employed the 
Accelerated Failure Time (AFT) model. Both models were estimated using the R survival package. Our 
main regression is specified as follows.  
 
𝑙𝑜𝑔 ℎ!(𝑡) = α(𝑡) + β"𝑊𝑜𝑚𝑒𝑛! + β#𝑆𝑢𝑝𝑝𝑜𝑟𝑡! + β$𝑊𝑜𝑚𝑒𝑛 × 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 + 𝑍!%γ   eq(1) 
 
W modeled the log hazard of exiting publishing careers as a linear function of gender, career types, and 
other covariates Vector Z, which include the total number of publications, the average number of first 
five-year citations (c5), the average number of team size from the first 3 years of publishing careers. We 
used binary variables indicating the upper 90th percentile in these three early performance variables in our 
regressions. To account for potential unobserved heterogeneity across cohorts, we incorporated cohort 
fixed effects into our analysis. Detailed information on our estimation methods and descriptive statistics 
can be found in Supplementary Materials (SM B1-5).  
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Figures 
 

 

 

 
 
 
Fig 1. (A-D) Fraction of lead-career types by 5-year cohort, based on binary gender identified from authors’ first 
names. Note that lead-career types are authors who have published at least one lead-author paper during their entire 
publishing careers. (E-H) Mean publishing career lengths by 5-year cohort, based on binary gender identified from 
authors’ first names. (I-L) Correlation between gender ratio in publishing career length by 5-year cohort and the 
fraction of lead-career types by 5-year cohort. The vertical axis represents the female-to-male ratio of mean career 
length, while the horizontal axis represents the female-to-male ratio of the fraction of lead career types.  
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Fig 2. (A-B) Estimated coefficients of women authors by cohorts in natural sciences (A) and social sciences (B). 
Blue dots represent the coefficients estimated from the Cox Proportional Hazard model, excluding career-type 
control. The blue line depicts the slope from regressing estimated coefficients without career-types control on cohort 
years. The red dots represent the estimated coefficients with the career-type control. The red line depicts the slope 
from regressing estimated coefficients with career-types control on cohort years. Both models include productivity, 
the number of coauthors, and the average team size from the first 3 years of authors’ publishing careers. (C-D) The 
estimated proportion of the effects of gender on exiting publishing careers mediated by career type across cohorts 
in natural sciences (C) and social science (D). Both C and D show fitted trend lines indicating the change in the 
mediated proportion over time, with error bars representing the variability in estimates.  
 
 

 
Fig 3. Interaction effects between Gender and Career Types over Cohorts in the natural sciences sample (A) and 
social sciences sample (B). Interaction effects were estimated using the Cox Proportional Hazard model specified 
in eq(1) without cohort fixed effects. The vertical axes represent the magnitudes of the estimated interaction effects 
based on cohort year, which are displayed on the horizontal axes. Vertical lines around the estimated points 
represent the 95% confidence intervals.  
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Tables  
Table 1. Cox proportional hazard regressions from Natural Sciences (Entire Periods) 

 (1) (2) (3) (4) 

Genderfemale 1.141*** 1.131*** 1.093*** 1.111*** 
 (1.003) (1.003) (1.003) (1.004) 

support   1.837*** 1.872*** 
   (1.004) (1.005) 

early_product_top  0.660*** 0.726*** 0.727*** 
  (1.006) (1.006) (1.006) 

early_c5_top  0.893*** 0.904*** 0.904*** 
  (1.005) (1.005) (1.005) 

early_teamsize_top  0.942*** 0.807*** 0.807*** 
  (1.006) (1.006) (1.006) 

Genderfemale:support    0.954*** 
    (1.007) 

Observations 520,471 520,471 520,471 520,471 
Log Likelihood -4,866,630.000 -4,863,680.000 -4,850,208.000 -4,850,186.000 
LR Test 7,870.759*** (df = 62) 13,769.370*** (df = 65) 40,713.690*** (df = 66) 40,757.920*** (df = 67) 
 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
 
 
Table 2. Cox proportional hazard regressions from Social Sciences (Entire Periods) 

 (1) (2) (3) (4) 

Genderfemale 1.056*** 1.043*** 1.027*** 1.004 
 (1.007) (1.007) (1.007) (1.008) 

support   2.294*** 2.185*** 
   (1.008) (1.012) 

early_product_top  0.545*** 0.609*** 0.608*** 
  (1.014) (1.014) (1.014) 

early_c5_top  0.795*** 0.777*** 0.776*** 
  (1.011) (1.011) (1.011) 

early_teamsize_top  1.206*** 0.941*** 0.941*** 
  (1.011) (1.012) (1.012) 

Genderfemale:support    1.092*** 
    (1.015) 

Observations 137,578 137,578 137,578 137,578 
Log Likelihood -1,076,422.000 -1,074,905.000 -1,070,069.000 -1,070,052.000 
LR Test 1,201.837*** (df = 62) 4,236.148*** (df = 65) 13,908.570*** (df = 66) 13,942.450*** (df = 67) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
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Appendix A: Dataset and Descriptive Results  

 

A1. Introduction  
 

In this paper, we empirically examine the extent to which the career type of scientists is gendered, how 
the gendering of career type explains existing inequality in publishing careers in science, and how career 
type differentially affects (by gender) the publishing careers of scientists. To address these empirical 
questions, we need to construct comprehensive publishing careers of scientists in our selected fields. We 
do this by obtaining the following information about each scientist: the time in which scientists entered 
and left their publishing careers, taking into account any right censoring, their binary gender, career type 
(lead vs. supporting career types), and various measures of their early-career academic activities. All of 
this information is sourced from bibliographic records available through SciSciNet(21) in the fields of 
biology, chemistry, psychology, and sociology. 
 
A2. Dataset  

 
Our main bibliographic dataset comes from SciSciNet (21), a large-scale open data lake that incorporates 
open-source bibliometric datasets covering over 134 million scientific publications. The advantage of this 
dataset for our research is not only that it is open source but also that it provides crucial information for 
the operationalization of our key variables, including disambiguated authors and full names, which can be 
used to infer binary gender information. In SciSciNet, there are a total of 311 fields, consisting of 19 top-
level fields and 292 sub-level fields. Of 117,633,905 bibliographical records with field information, 99.38% 
are assigned with at least one top-level field. Furthermore, 99.35% of them are assigned a single top-level 
field. So, most records are assigned with single top-level fields. In our paper, we concentrate on extracting 
comprehensive bibliographic records associated with the domains of Biology, Chemistry, Psychology, 
and Sociology, which fall within these 19 top-level fields. 
 
To construct the publishing careers of scientists in these four fields, our approach involves initially 
identifying all authors from bibliographic records within each of these fields. Subsequently, since some 
of these authors may also publish papers beyond the selected fields, we collect all publication records 
authored by these individuals that fall outside of the selected fields. While our analysis is operationalized 
at the field-author level, including authors who have published at least one paper in a focal field may not 
be desirable. We use authors who have published at least half of their publications in the focal field as 
focal-field authors. Previous studies documented the growth of transient authors, authors who have only 
published a single paper in their careers. To address the inflated count of supporting types, we exclude 
transient authors in similar manners defined by previous studies (9, 19), as individuals who have published 
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only one paper and have a career duration of fewer than two years. Additionally, we excluded authors who 
have published an excessive number of papers, specifically more than 20 in a single year.  
 
Meanwhile, given that different countries have different science institutions, in particular ways in which 
they provide permanent positions to scientists, we exclusively focused on US scientists. This is 
particularly important because, in the US, basic science research is mostly led by universities, and the role 
of non-university public research institutions is not as pronounced as in Europe (cite). Thus, we consider 
an author to be a US author if more than 50% of the papers are published with US-affiliated organizations. 
Finally, we isolated our sample authors to those authors who started to publish from 1951 to 2012, which 
included a total of 62 cohorts. After excluding authors whose binary gender information cannot be inferred 
(see next section), our final career dataset is comprised of 334,111 authors from the field of biology, 
186,360 from chemistry, 116,346 from psychology, and 21,232 from sociology.  
 
A3. Gender Disambiguation 

 
In order to proxy a binary gender of an author, we relied on SciSciNet’s gender identification score, which 
built upon the work of Van Buskirk, Clauset and Larremore (33). This gender score falls within the range 
of (0,1), where a score of 0 indicates a strong male association and a score of 1 suggests a strong female 
association. Our data shows that distribution of these scores is predominantly clustered around values 
close to 0 and close to 1 (Fig. 1). In our paper, we adopt the following criteria for determining an author's 
gender: An author is categorized as a woman if their gender score is less than or equal to 0.1. Conversely, 
an author is classified as a man if their gender score is greater than or equal to 0.9.  

 
Fig 1. Gender distribution of authors in SciSciNet (n= 86286037). The score is close to 0 if an author's name is 
more male, while it is close to 1 if the name is more female. 
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Fig 2. Distribution of identified binary gender among authors in four selected fields. An author is categorized as a 
“female” if their gender score is less than or equal to 0.1. Conversely, an author is classified as a “male” if their 
gender score is greater than or equal to 0.9. We code the remaining authors as “unknown.”  
 
Fig 2. illustrates the fraction of identified genders from the cohorts of authors whose names start to appear 
in their respective fields from 1951 to 2012. The fraction of authors that were not identified ranges from 
9.4% in sociology to 20.7% in chemistry. We code these as missing and drop them from our final data. 
We compared our identified gender composition with the reported statistics from the NSF’s Survey of 
Earned Doctorates (SED) from 2003 to 2013 (34). Our identified gender ratios, in terms of direction and 
trend, were mostly consistent with the SED statistics (Fig. 3). The observed discrepancy in the magnitude 
may be due to a distinction between those who publish in these fields and those who have PhDs in these 
fields, highlighting that our population of interest is those who publish in journals covered by SciSciNet. 
These results suggest that the population based on the degree of PhD may have a different gender mix 
than the publishing researcher population (35).  
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Fig 3. Comparison of Female-to-Male Scientist Ratios: Our Data vs. NSF Survey of Earned Doctorates (SED). The 
y-axis represents the female-to-male scientist ratio, while the x-axis depicts the doctoral receiving year for NSF 
SED (in orange) and the years in which scientists start their publishing careers (in blue), which comes from our 
final dataset. A y-axis value greater than 1 indicates the overrepresentation of women. Please note that SED data 
provides the number of doctoral recipients by sex from 2003 to 2013. 
 
A4. Career Types  

 
A4.1 Career Types Classification  
 
Prior studies have discussed and documented the increasing role differentiation in science (14-16, 19, 26). 
To measure the presence of this divergence in the scientific workforce in terms of the roles they play in 
knowledge production, we classify each author into one of two types: lead career type and supporting 
career type (17, 19). Lead career types are authors who, at any point in their careers, have produced at 
least one paper as first authors. In our data, an author of a single-authored paper is categorized as a lead 
career type. For multiple-authored papers, we define lead career type as the first author. Supporting career 
types are the authors who, at any point in their careers, have not appeared in a publication as a first author 
(Fig. 4).  
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Fig 4. Classification of career type. This figure demonstrates the coding scheme used to classify scientists into lead 
vs. supporting career types based on the authorship position of scientists’ publication history. Scientists are 
classified as lead career types if they have ever published a first-authored paper in their publishing careers. 
Conversely, scientists are classified as supporting career types if they have never had a first-author position in their 
publishing careers.  
 
As suggested by the existing literature on the organization of science, the work of supporting career types 
is exemplified by labor-intensive tasks, such as performing experiments and generating data, while lead 
career types focus on abstract and conceptual tasks, such as research design and formulating research 
questions. We attempt to validate these ideal types by exploiting information on authorship contribution 
roles (17, 36, 37).   
 
A4.2 Career Types and Task Division  
 
To obtain task division information from the contribution statements, we used a dataset provided by, Lin, 
Frey and Wu (38). This dataset (herein, the LFW dataset) provides information from 57,887 records about 
which authors participated in one of the four standardized tasks in paper production: “conceived,” “wrote,” 
“analyzed,” and “performed.” The LFW dataset covers four journal sources: Science, Nature, PNAS, and 
PLOS ONE. By matching authors’ MAGIDs (Microsoft Academic Graph IDs) from these records, we 
were able to assign career types to 30,829 authors in biology, 3,755 authors in chemistry, 1,288 authors 
in psychology, and 5 authors in sociology. The limited coverage in sociology may be attributed to the 
tendency of sociologists to publish less frequently in general audience journals. Due to the small sample 
size, we excluded sociology from the validation exercise.  
 
From this merged LFW dataset, we report the fraction of tasks performed across authors and fields by 
career type (Fig. 6A-L). Our findings suggest a striking difference between lead and supporting career 
types in terms of task specializations. For example, in biology, more than half of the lead career types 
have performed “conceived” roles from the list of their publications (Fig. 6A). This contrasts sharply with 
only 16.7% of supporting career types performing this task (Fig. 6A). This pattern is consistent across 
fields, with chemistry showing 49.3% vs. 23.6% (Fig. 6E) and psychology with 62.6% vs. 20.8% (Fig. 6I) 
for lead vs. supporting career types, respectively.  Moreover, this division of labor is similarly evident in 
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the task involving writing drafts (Fig. 6B,F,J). Meanwhile, the difference between the career types is less 
pronounced when it comes to analyzing data (Fig. 6C,G,K). In psychology, the differences between lead 
vs. supporting career types are not statistically significant (Fig. 6K). Looking at the tasks involving bodily 
labor, such as “performance” (i.e., performing experiments and producing data), a clear division of labor 
emerges. Supporting career types are overwhelmingly engaged in this task. For example, in biology, 73.2% 
of supporting career types have undertaken this task from the list of their published papers, compared to 
60.6% of the lead career types (Fig. 6D). A similar pattern is observed in chemistry (Fig. 6H) and 
psychology (Fig. 6L). Thus, by linking our dataset to the contribution statements, we demonstrate that our 
operationalization of lead vs. supporting career types using authorship positions from their publication 
history is consistent with our priors about the role of supporting scientists in the increasingly 
bureaucratized production of science (15, 16, 18).  
 
 

 
Fig 6. Fraction of tasks performed across authors by career types in Biology (subplots A-D), Chemistry (subplots 
E-H), and Psychology (subplots I-L). Each subplot illustrates the proportion of lead or supporting career types 
performing tasks based on available publication records with contribution statement information. The first row 
represents 30,829 authors from biology, the second row includes 3,755 authors in chemistry, and the last row is 
from 1,288 authors from psychology.  
 
A5. Career Type Transition 

 
In our paper, our goal is to investigate differential publishing career longevity by gender and career types. 
As previously explained, we categorize authors as either lead or supporting careers based on their 
publication history using authorship positions. However, it is possible that among lead career types, some 
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may have transitioned to this role only later in their careers. This could exacerbate measurement errors 
with a bias towards the increasing longevity of lead-career types as those with longer careers have more 
chances to eventually become lead scientists. To address this concern, we examine the distribution of 
career transition times among lead-career authors to examine whether such cases are prevalent in our 
sample data.  Specifically, we present a distribution of time-to-lead for eventual lead-career types (Fig. 7). 
 
The majority of lead scientists have transited to lead-career type early in their publishing careers (Fig. 7). 
For both men and women lead-career types, 90% achieve this status, varying by field: 5 years for Biology, 
4 years for Chemistry and Psychology, and 2 years for Sociology. Additionally, our analysis indicates that 
gender does not significantly influence this career progression in natural sciences. However, in the social 
sciences (psychology and sociology), women scientists take an additional year to reach a lead-career status 
compared to their male counterparts, with 90% of women achieving this status in one year longer than 
men. Our findings suggest that the distinction between lead and supporting career types is a more 
deterministic feature of scientists’ career paths. While our data does show that some scientists assume lead 
roles later in their careers, the majority make these transitions early on. These findings further support the 
evidence that the production of science is becoming increasingly bureaucratized, with a clear bifurcation 
of career paths into lead and supporting roles (14, 16, 19).  
 

 
Fig 7. This figure displays the distribution of time-to-lead career types across all authors in the sample (subplots A), 
women scientists (subplots E-H), and men scientists (subplots I-L). The horizontal axes represent the transition time 
to reach lead status in years, while the vertical axes depict the complementary cumulative distribution function 
(CCDF).  
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A6. Career Longevity  
 

One difficulty with debates on the careers of scientists is the lack of or the continually shifting definition 
of the STEM workforce (39, 40). While a strict definition could only include those who currently are in 
academia, a broader definition could define the STEM workforce by the extent to which a person’s current 
occupation is related to STEM or the extent to which a person’s field of degree is related to STEM. Indeed, 
a person who stopped publishing in peer-reviewed journals and pursues a non-academic career can still 
contribute to science in many ways (41).  Therefore, who should be considered a scientist or an active 
scientist is a non-trivial question. In our case, we explicitly focus on those who have contributed to the 
production of science by publishing papers in peer-reviewed journals, which is the major platform by 
which scientists communicate their findings (42). Using this criterion, we identify authors and their careers 
by the incidence and duration of their peer-reviewed publication activities. In our definition, each scientist 
starts their career when he or she first appears on our field-level data. If the authors’ names appear in the 
last five years of our dataset, which is during 2017-2021, we consider their careers as right truncated. If 
their names do not appear during that period, we consider that they have exited at the point of their last 
publications. For authors whose names only appear once in our data, we conceive of them as transient 
authors and subsequently drop them from our sample of scientists.  
 
One advantage of our method is that we tackle inequalities in role and career by gender within the same 
cohort of authors, thereby avoiding survival bias and other forms of bias created by the changing 
demography of the scientific workforce. We identify cohorts of authors who first start to appear in their 
respective fields from 1951 to 2012. We stop at the 2012 cohort to ensure that we capture sufficient career 
lengths in the analysis. Note that our bibliographic records from 2017 to 2021 are used to identify active 
status for all authors in our data. For example, an author whose name first appears in 2012 can have a 
maximum career length of 4 years such that depending on the appearance of his or her name in the last 
three years of our dataset (2017-2021), his or her career can either be right-truncated or ends by the 4th 
year. Focusing on authors whose primary institutions are in the US (see section), our final data includes 
full career information for 375,525 authors from natural sciences and 110,078 from social sciences. At the 
field level, we have 243,105 authors from biology, 132,420 authors from chemistry, 90,537 authors from 
psychology, and 19,541 authors from sociology (See Table ).  
 
A7. Non-parametric estimations of career longevity by career types and gender  

 
In this section, we present non-parametric Kaplan-Meier survival curves comparing lead and supporting 
career types (Fig. 8). The data is derived from the comprehensive cohort of individuals who entered 
publishing careers between 1951 and 2012 (Fig. 8A-D). To provide a more contemporary perspective, we 
also include Kaplan-Meier curves for a subset of scientists who entered publishing careers from 2001 to 
2012 (Fig. 8E-H). Just looking visually, there is a stark difference between lead and supporting roles, with 
the supporting career types showing significantly shorter career longevity when compared to their lead 
counterparts. For instance, in the field of biology, the half-life of scientists’ publishing careers, which 
estimates the time it takes for half of the initial cohort to exit their publishing career, is 9 years for lead 
career types and 4 years for supporting career types. This difference between the two distributions is 
statistically significant based on non-parametric tests involving the log-rank test and the Wilcoxon test 
(Fig. 8A). Moreover, this pattern is consistent across different fields (Fig. 8B-D) and for recent cohorts 
(Fig. 8E-H).  
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We also present Kaplan-Meier curves representing the publishing careers of male and female scientists 
(Fig. 9). In the fields of biology, chemistry, and psychology, male scientists have longer half-lives 
compared to their female counterparts. The differences in their distributions of career longevity are 
statistically significant, as evidenced by both the log-rank test and the Wilcoxon test (Fig. 9A-C, E-G). 
However, an opposite pattern is observed in sociology, where women exhibit longer half-lives than men. 
This difference in distribution is statistically significant, confirmed by the Wilcoxon test for the entire 
sample (Fig. 9D) and the Log-rank test for the recent cohort sample (Fig 9G). 
 

 
Fig 8. Kaplan-Meier Estimated Survival Curves for Lead and Supporting Career Types for cohorts from the entire 
period (A-D) and for the post-2000 cohorts.  Horizontal axes depict career durations in years, while the vertical 
axes represent survival probability given career durations. Blue curves indicate the survival curves for the lead 
career types while supporting career types are depicted in red.  
 

 
 
Fig 9. Kaplan-Meier Estimated Survival Curves for Women and Men authors for cohorts from the entire period (A-
D) and for the post-2000 cohorts.  Horizontal axes depict career durations in years, while vertical axes represent 
survival probability given career durations. Blue curves indicate the survival curves for the lead career types while 
supporting career types are depicted in red.  
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Appendix B: Regression Estimations  
 
The regression table and figure in the main manuscript are based on estimates from a multivariate analysis 
using the Cox proportional hazard model (43) and the Accelerated Failure Model (AFT) based on Weibull 
distribution. In this section, we briefly describe our models and specifications.  
 
B1. Cox Proportional hazard model 
 
The proportional hazard model is known to be the most flexible method to estimate survival data, with its 
advantage being avoiding making any assumptions about the function of time in the model (44). Because 
of the discrete nature of our measurement of career length, which was measured in years, we used the 
Efron method to correct for ties.  
 
We model the scientist’s career attrition using the continuous hazard function shown: ℎ(𝑡) =
𝑙𝑖𝑚
&'→)

*+𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡,𝑇 ≥ 𝑡-
&'

, with h(t) as the instantaneous hazard rate at which a scientist exits his or 
her field at time T between interval [𝑡, 𝑡 + δ] given that the scientist was at risk of leaving science at time 
t. We model this hazard function with the Cox proportional hazard model as follows:  ℎ(𝑡|𝑋) =
ℎ)(𝑡)𝑒𝑥𝑝(𝑋β), where ℎ(𝑡|𝑋) is the hazard at time t for a scientist with a given set of covariates X. ℎ)(𝑡) 
is the time-dependent baseline hazard, representing the hazard for a scientist with the baseline values of 
the covariates. Taking the logarithm of this function, we get the following log-hazard function with our 
model specification.  
 
𝑙𝑜𝑔 ℎ!(𝑡) = α(𝑡) + β"𝑊𝑜𝑚𝑒𝑛! + β#𝑆𝑢𝑝𝑝𝑜𝑟𝑡! + β$𝑊𝑜𝑚𝑒𝑛 × 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 + 𝑍!%γ   eq(1) 
 
The proportional hazard model is estimated with the partial likelihood method, which discards the time-
dependent variable α(t) , which is assumed to be the same for all scientists, allowing us only to 
parameterize the effects of time-independent variables. In this specification, β" captures the difference in 
log-hazard between women and men for lead career types, while β#  captures the difference between 
supporting and lead career types for men. Β$ captures the interaction effect between gender and career 
type, which can be interpreted as the difference in the supporting career type effects on log hazards 
between women and men. 
 
For example, 𝛽" > 0 would suggest that the log-hazard of exiting publishing career for women is greater 
than that of men. Exponentiating this coefficient, 𝑒.!, would give the hazard ratio, indicating the factor 
by which the exit hazard for women is multiplied relative to men. Lastly, γ is the vector of parameters for 
our control covariates vector 𝑍. Our control variables include three measures of the scientists’ early 
academic performance: scientists’ number of publications, average c5 citations (citations from the first 5 
years of publications), and the average team size during the first three years of their careers. We also 
include a set of binary variables that correspond to the year in which the author starts to publish, which 
allows us to control for any cohort-specific effects on log hazards.   
 
B2. Accelerated Failure Time (AFT) model 

 
It is important to note that the proportional hazard model assumes that hazards attributed to covariates are 
constant in time (45), an assumption that could be violated when considering the different empirical 
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survival functions observed between lead and supporting scientists (see Fig. 9). To address this issue, we 
consider an alternative approach using an accelerated failure time model (AFT). This model directly 
estimates the survival time, 𝑇!, rather than the hazard ratios.   
 
We use Weibull distribution in the AFT model due to its flexibility in accommodating increasing, constant, 
or decreasing hazard rates depending on its shape parameter 𝜌. The survival function of the Weibull 
distribution is given by 𝑆(𝑡) = 𝑒𝑥𝑝(−(𝜆𝑡)/), where, 𝜌 is a shape parameter and 𝜆 is a scale parameter. 
The general form of the AFT model is: 𝑙𝑜𝑔(𝑇!) = 𝛼 + 𝑋!𝛽 + 𝜎W!, where 𝑙𝑜𝑔(𝑇!) is the natural logarithm 
of the survival time for the ith scientist, 𝛼 is the intercept, 𝑋! is the vector of covariates for the ith scientist, 
𝛽 is the vector of coefficients indicating the effect of the covariates on the log-transformed survival time, 
𝜎 is the scale parameter for the error term W!. The model specification is identical to those used for the 
cox proportional hazard model (see eq(1)). To integrate the AFT model with the Weibull distribution, we 
can parameterize the scale parameter 𝜆 of the Weibull distribution as a function of the linear predictor 
such that 𝜆 = 𝑒𝑥𝑝 P− 0123

/
Q. This function is then used to substitute 𝜆 into the Weibull probability density 

function, 𝑓(𝑡; 𝜆, 𝜌) = 𝜌𝜆(𝜆𝑡)/4"𝑒(46')", for maximum likelihood estimation.  
 
In the context of the AFT model, the coefficient vectors β represent the covariates’ effect on the log of 
survival time. For example, β" from eq(1) would indicate the difference in the log of the expected survival 
time between women and men. If β" > 0, for binary covariate like gender, it indicates that the expected 
log survival time for women is greater than that for men. Exponentiating the coefficient, 𝑒3! , would 
provide the multiplicative effect on the survival time, i.e., for women compared to men. All regression 
estimates were performed using the “survival” package in R (46) for both the Cox proportional hazards 
model and the AFT (Accelerated Failure Time) model with a Weibull distribution. 
 
B3. Mediation Analysis 
 
We performed a mediation analysis to examine how gender inequality is realized via the type of career 
paths that scientists take in the production of science. According to Imai, Keele, Tingley and Yamamoto 
(47), the conventional mediation analysis may potentially lead to biased estimations when the mediator 
variable is not randomly assigned. Moreover, the conventional mediation analysis makes it intractable to 
work with non-linear models. We adopted the average causal mediation effect (ACME) framework (48) 
to address the non-random assignment of the mediator variable (Fig.2 C,D in the main manuscript).  
 
The average casual mediation analysis requires sequential ignorability assumptions (47), which involve 
two key features. Firstly, it assumes that the treatment (gender) is independent of the mediator (career 
type) and outcome (hazard rate), conditional on observed covariates (early performances). Secondly, it 
assumes that the mediator (career type) is independent of the outcome (hazard rate) conditional on the 
treatment and covariates, suggesting that there are no unobserved confounders influencing both the 
mediator and outcome. We posit that the first part of the sequential ignorability assumption is plausible in 
our case, given that our measure of gender may highly correlate with a biological characteristic. The 
second feature assumes the independence of career type from the hazard rate, conditional on observed 
covariates, including gender. While we show that the career transition into lead career types occur early 
in their careers (fig), we cannot rule out potential unobserved factors that may affect the career transition 
and the outcome variable. This is a limitation of our study that relies on observational data.  
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To estimate the average casual mediation effect (ACME), we first fit a linear regression model, the 
mediator model, which explains the variation in the mediator variable (career type) based on our covariates, 
including gender and three early performance measures (total number of publications, average number of 
the first five-year citations (c5), average number of team size from the first 3 years of publishing careers). 
We then performed the Cox proportional hazard model with the specification shown in eq(1) to examine 
how the mediator (career type) and other covariates, including gender, jointly influence the hazard rate. 
These two models are used to calculate the ACME (represents the treatment effect mediated through the 
mediator) and the total effect (total effect of the treatment on the outcome). The proportion of the gender 
effect on career longevity, mediated by career type, is calculated as the ratio of ACME to the total effect. 
This mediation analysis is conducted for each cohort, ranging from 1951 to 2012, and the results are 
depicted in Figures 2C and 2D in our main manuscript.  
 
B4. Descriptive Statistics 
 
Table. 1 Descriptive Statistics by Fields  

 N mean std min 25% 50% 75% max 
Natural Sciences (Biology and Chemistry) 

Career lengths 520,471 9.09 9.75 1 3 5 12 65 
Droped out 520,471 0.75 0.43 0 1 1 1 1 
Women 520,471 0.37 0.48 0 0 0 1 1 
Lead 520,471 0.72 0.45 0 0 1 1 1 
Early pubs 520,471 2.95 2.18 1 2 2 4 52 
Avg. early c5 520,471 22.54 55.95 0 5.67 12.53 25 17310.5 
Avg. early teamsize 520,471 5.97 24.2 1 3 4.5 6.5 5363 
Cohort 520,471 1994.85 13.76 1951 1987 1998 2006 2012 
Social Sciences (Psychology and Sociology) 

Career lengths 137,578 9.71 9.95 1 3 6 13 65 
Droped out 137,578 0.71 0.45 0 0 1 1 1 
Women 137,578 0.51 0.5 0 0 1 1 1 
Lead 137,578 0.8 0.4 0 1 1 1 1 
Early pubs 137,578 2.48 1.9 1 1 2 3 35 
Avg. early c5 137,578 9.83 16.66 0 1.6 5 12.33 1538.5 
Avg. early teamsize 137,578 3.34 6.45 1 1.85 2.75 4 996.9 
Cohort 137,578 1994.83 14.27 1951 1985 1999 2007 2012 
Biology 

Career lengths 334,111 9.37 9.69 1 3 6 12 65 
Droped out 334,111 0.72 0.45 0 0 1 1 1 
Women 334,111 0.41 0.49 0 0 0 1 1 
Lead 334,111 0.73 0.45 0 0 1 1 1 
Early pubs 334,111 2.94 2.16 1 2 2 4 52 
Avg. early c5 334,111 27.18 67.89 0 7 15.14 29.67 17310.5 
Avg. early teamsize 334,111 6.58 29.69 1 3.33 4.89 7 5363 
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Cohort 334,111 1996.12 13 1951 1989 1999 2006 2012 
Chemistry 

Career lengths 186,360 8.58 9.83 1 2 5 11 65 
Droped out 186,360 0.83 0.38 0 1 1 1 1 
Women 186,360 0.28 0.45 0 0 0 1 1 
Lead 186,360 0.71 0.45 0 0 1 1 1 
Early pubs 186,360 2.97 2.22 1 2 2 4 37 
Avg. early c5 186,360 14.22 19.31 0 4.25 9.18 17.6 1361.5 
Avg. early teamsize 186,360 4.89 7.37 1 3 4 5.67 798.5 
Cohort 186,360 1992.58 14.76 1951 1982 1996 2005 2012 
Psychology 

Career lengths 116,346 9.97 10.2 1 3 6 13 65 
Droped out 116,346 0.7 0.46 0 0 1 1 1 
Women 116,346 0.52 0.5 0 0 1 1 1 
Lead 116,346 0.78 0.42 0 1 1 1 1 
Early pubs 116,346 2.6 1.98 1 1 2 3 35 
Avg. early c5 116,346 10.99 17.64 0 2.2 6 14 1538.5 
Avg. early teamsize 116,346 3.61 6.67 1 2 3 4.27 996.9 
Cohort 116,346 1994.47 14.35 1951 1984 1998 2007 2012 
Sociology 

Career lengths 21,232 8.28 8.29 1 2 5 11 65 
Droped out 21,232 0.75 0.43 0 1 1 1 1 
Women 21,232 0.47 0.5 0 0 0 1 1 
Lead 21,232 0.92 0.27 0 1 1 1 1 
Early pubs 21,232 1.85 1.18 1 1 2 2 17 
Avg. early c5 21,232 3.45 6.74 0 0 1.3 4 201 
Avg. early teamsize 21,232 1.83 4.81 1 1 1.25 2 670 
Cohort 21,232 1996.84 13.68 1951 1989 2001 2008 2012 
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B5. Regression results  
B5.1 Natural Sciences  
 
Table 2. Cox proportional hazard regressions from Natural Sciences (Entire Periods) 

 (1) (2) (3) (4) 

Genderfemale 1.141*** 1.131*** 1.093*** 1.111*** 
 (1.003) (1.003) (1.003) (1.004) 

support   1.837*** 1.872*** 
   (1.004) (1.005) 

early_product_top  0.660*** 0.726*** 0.727*** 
  (1.006) (1.006) (1.006) 

early_c5_top  0.893*** 0.904*** 0.904*** 
  (1.005) (1.005) (1.005) 

early_teamsize_top  0.942*** 0.807*** 0.807*** 
  (1.006) (1.006) (1.006) 

Genderfemale:support    0.954*** 
    (1.007) 

Observations 520,471 520,471 520,471 520,471 
Log Likelihood -4,866,630.000 -4,863,680.000 -4,850,208.000 -4,850,186.000 
LR Test 7,870.759*** (df = 62) 13,769.370*** (df = 65) 40,713.690*** (df = 66) 40,757.920*** (df = 67) 
 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
 
Table 3. Weibull regressions from Natural Sciences (Entire Periods) 

 (1) (2) (3) (4) 

Genderfemale 0.865*** 0.873*** 0.909*** 0.888*** 
 (1.004) (1.004) (1.003) (1.004) 

support   0.522*** 0.508*** 
   (1.004) (1.005) 

early_product_top  1.568*** 1.401*** 1.399*** 
  (1.006) (1.006) (1.006) 

early_c5_top  1.135*** 1.116*** 1.116*** 
  (1.006) (1.005) (1.005) 

early_teamsize_top  1.066*** 1.251*** 1.251*** 
  (1.006) (1.006) (1.006) 

Genderfemale:support    1.067*** 
    (1.007) 

Constant 18.864*** 17.869*** 19.512*** 19.616*** 
 (1.042) (1.042) (1.041) (1.041) 

Observations 520,471 520,471 520,471 520,471 
Log Likelihood -1,352,473.000 -1,349,242.000 -1,334,335.000 -1,334,295.000 
chi2 25,989.000*** (df = 62) 32,450.840*** (df = 65) 62,263.220*** (df = 66) 62,344.710*** (df = 67) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
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Table 4. Cox proportional hazard regressions from Natural Sciences (2000-2012) 

 (1) (2) (3) (4) 

Genderfemale 1.155*** 1.146*** 1.127*** 1.165*** 
 (1.005) (1.005) (1.005) (1.007) 

support   1.934*** 2.012*** 
   (1.005) (1.007) 

early_product_top  0.602*** 0.682*** 0.683*** 
  (1.011) (1.011) (1.011) 

early_c5_top  0.896*** 0.903*** 0.904*** 
  (1.009) (1.009) (1.009) 

early_teamsize_top  0.970*** 0.790*** 0.790*** 
  (1.009) (1.009) (1.009) 

Genderfemale:support    0.919*** 
    (1.010) 

Observations 240,652 240,652 240,652 240,652 
Log Likelihood -1,866,385.000 -1,864,986.000 -1,857,668.000 -1,857,634.000 
LR Test 1,473.721*** (df = 13) 4,272.657*** (df = 16) 18,908.380*** (df = 17) 18,976.120*** (df = 18) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
 
Table 5. Weibull regressions from Natural Sciences (2000-2012) 

 (1) (2) (3) (4) 

Genderfemale 0.882*** 0.889*** 0.904*** 0.879*** 
 (1.004) (1.004) (1.004) (1.005) 

support   0.580*** 0.560*** 
   (1.004) (1.006) 

early_product_top  1.528*** 1.366*** 1.364*** 
  (1.009) (1.009) (1.009) 

early_c5_top  1.098*** 1.088*** 1.087*** 
  (1.007) (1.007) (1.007) 

early_teamsize_top  1.025*** 1.211*** 1.211*** 
  (1.007) (1.007) (1.007) 

Genderfemale:support    1.075*** 
    (1.008) 

Constant 10.694*** 10.139*** 11.647*** 11.793*** 
 (1.008) (1.008) (1.008) (1.008) 

Observations 240,652 240,652 240,652 240,652 
Log Likelihood -495,655.700 -494,192.500 -486,393.300 -486,355.200 
chi2 5,726.972*** (df = 13) 8,653.429*** (df = 16) 24,251.750*** (df = 17) 24,328.040*** (df = 18) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
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B5.2 Social Sciences  
 
Table 6. Cox proportional hazard regressions from Social Sciences (Entire Periods) 

 (1) (2) (3) (4) 

Genderfemale 1.056*** 1.043*** 1.027*** 1.004 
 (1.007) (1.007) (1.007) (1.008) 

support   2.294*** 2.185*** 
   (1.008) (1.012) 

early_product_top  0.545*** 0.609*** 0.608*** 
  (1.014) (1.014) (1.014) 

early_c5_top  0.795*** 0.777*** 0.776*** 
  (1.011) (1.011) (1.011) 

early_teamsize_top  1.206*** 0.941*** 0.941*** 
  (1.011) (1.012) (1.012) 

Genderfemale:support    1.092*** 
    (1.015) 

Observations 137,578 137,578 137,578 137,578 
Log Likelihood -1,076,422.000 -1,074,905.000 -1,070,069.000 -1,070,052.000 
LR Test 1,201.837*** (df = 62) 4,236.148*** (df = 65) 13,908.570*** (df = 66) 13,942.450*** (df = 67) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
 
Table 7. Weibull regressions from Social Sciences (Entire Periods) 

 (1) (2) (3) (4) 

Genderfemale 0.941*** 0.954*** 0.971*** 0.990 
 (1.007) (1.007) (1.007) (1.008) 

support   0.418*** 0.436*** 
   (1.008) (1.012) 

early_product_top  1.913*** 1.671*** 1.673*** 
  (1.014) (1.014) (1.014) 

early_c5_top  1.289*** 1.310*** 1.310*** 
  (1.012) (1.012) (1.012) 

early_teamsize_top  0.816*** 1.061*** 1.061*** 
  (1.012) (1.012) (1.012) 

Genderfemale:support    0.927*** 
    (1.015) 

Constant 13.777*** 12.878*** 12.965*** 12.926*** 
 (1.099) (1.098) (1.095) (1.095) 

Observations 137,578 137,578 137,578 137,578 
Log Likelihood -348,934.300 -347,293.700 -342,057.100 -342,044.600 
chi2 4,598.411*** (df = 62) 7,879.714*** (df = 65) 18,352.820*** (df = 66) 18,377.800*** (df = 67) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
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Table 8. Cox proportional hazard regressions from Social Sciences (2000-2012) 
 (1) (2) (3) (4) 

Genderfemale 1.066*** 1.053*** 1.036*** 1.012 
 (1.011) (1.011) (1.011) (1.013) 

support   2.361*** 2.254*** 
   (1.011) (1.019) 

early_product_top  0.436*** 0.511*** 0.511*** 
  (1.024) (1.025) (1.025) 

early_c5_top  0.931*** 0.891*** 0.891*** 
  (1.018) (1.018) (1.018) 

early_teamsize_top  1.317*** 0.967* 0.968* 
  (1.017) (1.018) (1.018) 

Genderfemale:support    1.074*** 
    (1.023) 

Observations 65,755 65,755 65,755 65,755 
Log Likelihood -404,963.400 -404,080.400 -401,511.500 -401,506.600 
LR Test 727.797*** (df = 13) 2,493.900*** (df = 16) 7,631.626*** (df = 17) 7,641.554*** (df = 18) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
 
Table 9. Weibull regressions from Social Sciences (2000-2012) 

 (1) (2) (3) (4) 

Genderfemale 0.946*** 0.956*** 0.970*** 0.988 
 (1.009) (1.009) (1.008) (1.010) 

support   0.492*** 0.510*** 
   (1.009) (1.015) 

early_product_top  2.008*** 1.719*** 1.720*** 
  (1.020) (1.020) (1.020) 

early_c5_top  1.063*** 1.100*** 1.100*** 
  (1.015) (1.014) (1.014) 

early_teamsize_top  0.789*** 1.026* 1.026* 
  (1.014) (1.014) (1.014) 

Genderfemale:support    0.944*** 
    (1.018) 

Constant 13.937*** 13.412*** 14.722*** 14.554*** 
 (1.019) (1.019) (1.018) (1.018) 

Observations 65,755 65,755 65,755 65,755 
Log Likelihood -126,382.000 -125,458.900 -122,712.600 -122,707.500 
chi2 2,428.691*** (df = 13) 4,274.890*** (df = 16) 9,767.566*** (df = 17) 9,777.672*** (df = 18) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
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B5.3 Biology  
Table 10. Cox proportional hazard regressions from Biology (Entire Periods) 

 (1) (2) (3) (4) 

Genderfemale 1.162*** 1.151*** 1.108*** 1.132*** 
 (1.004) (1.004) (1.004) (1.005) 

support   1.920*** 1.976*** 
   (1.005) (1.006) 

early_product_top  0.652*** 0.722*** 0.723*** 
  (1.008) (1.008) (1.008) 

early_c5_top  0.858*** 0.863*** 0.863*** 
  (1.007) (1.007) (1.007) 

early_teamsize_top  0.983** 0.842*** 0.842*** 
  (1.007) (1.007) (1.007) 

Genderfemale:support    0.940*** 
    (1.009) 

Observations 334,111 334,111 334,111 334,111 
Log Likelihood -2,864,308.000 -2,862,405.000 -2,853,009.000 -2,852,985.000 
LR Test 5,916.985*** (df = 62) 9,722.522*** (df = 65) 28,513.970*** (df = 66) 28,562.950*** (df = 67) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
 
Table 11. Weibull regressions from Biology (Entire Periods) 

 (1) (2) (3) (4) 

Genderfemale 0.850*** 0.859*** 0.897*** 0.873*** 
 (1.004) (1.004) (1.004) (1.005) 

support   0.504*** 0.486*** 
   (1.005) (1.006) 

early_product_top  1.576*** 1.401*** 1.398*** 
  (1.008) (1.008) (1.008) 

early_c5_top  1.181*** 1.170*** 1.169*** 
  (1.007) (1.007) (1.007) 

early_teamsize_top  1.017** 1.192*** 1.192*** 
  (1.007) (1.007) (1.007) 

Genderfemale:support    1.082*** 
    (1.009) 

Constant 18.778*** 17.839*** 19.450*** 19.605*** 
 (1.061) (1.061) (1.059) (1.059) 

Observations 334,111 334,111 334,111 334,111 
Log Likelihood -841,897.500 -839,833.300 -829,580.200 -829,540.900 
chi2 18,879.150*** (df = 62) 23,007.480*** (df = 65) 43,513.780*** (df = 66) 43,592.280*** (df = 67) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
 
 



 32 

Table 12. Cox proportional hazard regressions from Biology (2000-2012) 
 (1) (2) (3) (4) 

Genderfemale 1.194*** 1.184*** 1.159*** 1.209*** 
 (1.006) (1.006) (1.006) (1.008) 

support   2.005*** 2.117*** 
   (1.007) (1.009) 

early_product_top  0.594*** 0.674*** 0.676*** 
  (1.014) (1.014) (1.014) 

early_c5_top  0.879*** 0.870*** 0.871*** 
  (1.011) (1.011) (1.011) 

early_teamsize_top  1.014 0.835*** 0.835*** 
  (1.011) (1.011) (1.011) 

Genderfemale:support    0.899*** 
    (1.013) 

Observations 165,518 165,518 165,518 165,518 
Log Likelihood -1,193,563.000 -1,192,618.000 -1,187,215.000 -1,187,180.000 
LR Test 1,618.452*** (df = 13) 3,508.962*** (df = 16) 14,315.300*** (df = 17) 14,385.960*** (df = 18) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
 
 
Table 13. Weibull regressions from Biology (2000-2012) 

 (1) (2) (3) (4) 

Genderfemale 0.860*** 0.867*** 0.885*** 0.854*** 
 (1.005) (1.005) (1.005) (1.006) 

support   0.568*** 0.543*** 
   (1.005) (1.007) 

early_product_top  1.535*** 1.371*** 1.368*** 
  (1.011) (1.011) (1.011) 

early_c5_top  1.114*** 1.119*** 1.119*** 
  (1.009) (1.009) (1.009) 

early_teamsize_top  0.987 1.155*** 1.155*** 
  (1.009) (1.009) (1.009) 

Genderfemale:support    1.092*** 
    (1.010) 

Constant 11.886*** 11.297*** 12.925*** 13.139*** 
 (1.010) (1.010) (1.010) (1.010) 

Observations 165,518 165,518 165,518 165,518 
Log Likelihood -334,791.400 -333,810.100 -328,097.500 -328,058.900 
chi2 5,041.518*** (df = 13) 7,004.077*** (df = 16) 18,429.220*** (df = 17) 18,506.540*** (df = 18) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
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B5.4 Chemistry  
 
Table 14 Cox proportional hazard regressions from Chemistry (Entire Periods) 

 (1) (2) (3) (4) 

Genderfemale 1.221*** 1.214*** 1.174*** 1.204*** 
 (1.006) (1.006) (1.006) (1.007) 

support   1.656*** 1.694*** 
   (1.006) (1.007) 

early_product_top  0.661*** 0.718*** 0.719*** 
  (1.010) (1.010) (1.010) 

early_c5_top  0.944*** 0.962*** 0.963*** 
  (1.008) (1.008) (1.008) 

early_teamsize_top  0.868*** 0.755*** 0.756*** 
  (1.009) (1.009) (1.009) 

Genderfemale:support    0.934*** 
    (1.012) 

Observations 186,360 186,360 186,360 186,360 
Log Likelihood -1,735,619.000 -1,734,411.000 -1,730,756.000 -1,730,740.000 
LR Test 5,061.049*** (df = 62) 7,476.185*** (df = 65) 14,786.600*** (df = 66) 14,819.780*** (df = 67) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
 
Table 15. Weibull regressions from Chemistry (Entire Periods) 

 (1) (2) (3) (4) 

Genderfemale 0.799*** 0.805*** 0.838*** 0.811*** 
 (1.006) (1.006) (1.006) (1.007) 

support   0.580*** 0.564*** 
   (1.006) (1.007) 

early_product_top  1.568*** 1.424*** 1.422*** 
  (1.010) (1.010) (1.010) 

early_c5_top  1.066*** 1.043*** 1.043*** 
  (1.009) (1.009) (1.009) 

early_teamsize_top  1.168*** 1.351*** 1.349*** 
  (1.009) (1.009) (1.009) 

Genderfemale:support    1.092*** 
    (1.012) 

Constant 19.338*** 18.254*** 19.666*** 19.771*** 
 (1.057) (1.057) (1.056) (1.056) 

Observations 186,360 186,360 186,360 186,360 
Log Likelihood -505,801.500 -504,451.500 -500,346.400 -500,319.900 
chi2 11,903.790*** (df = 62) 14,603.790*** (df = 65) 22,813.950*** (df = 66) 22,867.090*** (df = 67) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
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Table 16. Cox proportional hazard regressions from Chemistry (2000-2012) 
 (1) (2) (3) (4) 

Genderfemale 1.197*** 1.188*** 1.178*** 1.214*** 
 (1.009) (1.009) (1.009) (1.012) 

support   1.790*** 1.842*** 
   (1.009) (1.012) 

early_product_top  0.608*** 0.682*** 0.683*** 
  (1.018) (1.018) (1.018) 

early_c5_top  0.905*** 0.937*** 0.937*** 
  (1.014) (1.014) (1.014) 

early_teamsize_top  0.874*** 0.708*** 0.709*** 
  (1.014) (1.015) (1.015) 

Genderfemale:support    0.927*** 
    (1.018) 

Observations 75,134 75,134 75,134 75,134 
Log Likelihood -569,965.100 -569,447.400 -567,542.800 -567,534.100 
LR Test 448.287*** (df = 13) 1,483.720*** (df = 16) 5,292.778*** (df = 17) 5,310.206*** (df = 18) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
 
Table 17. Weibull regressions from Chemistry (2000-2012) 

 (1) (2) (3) (4) 

Genderfemale 0.853*** 0.859*** 0.868*** 0.846*** 
 (1.007) (1.007) (1.007) (1.009) 

support   0.614*** 0.599*** 
   (1.007) (1.009) 

early_product_top  1.525*** 1.373*** 1.371*** 
  (1.015) (1.015) (1.015) 

early_c5_top  1.090*** 1.056*** 1.056*** 
  (1.012) (1.012) (1.012) 

early_teamsize_top  1.123*** 1.334*** 1.332*** 
  (1.012) (1.012) (1.012) 

Genderfemale:support    1.069*** 
    (1.015) 

Constant 8.748*** 8.208*** 9.459*** 9.550*** 
 (1.013) (1.013) (1.013) (1.014) 

Observations 75,134 75,134 75,134 75,134 
Log Likelihood -159,194.000 -158,641.900 -156,586.100 -156,575.900 
chi2 1,353.206*** (df = 13) 2,457.499*** (df = 16) 6,569.052*** (df = 17) 6,589.445*** (df = 18) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
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B5.5 Psychology 
 
Table 18. Cox proportional hazard regressions from Psychology (Entire Periods) 

 (1) (2) (3) (4) 

Genderfemale 1.090*** 1.074*** 1.058*** 1.039*** 
 (1.007) (1.008) (1.007) (1.009) 

support   2.435*** 2.353*** 
   (1.008) (1.012) 

early_product_top  0.538*** 0.615*** 0.614*** 
  (1.015) (1.015) (1.015) 

early_c5_top  0.787*** 0.771*** 0.771*** 
  (1.013) (1.013) (1.013) 

early_teamsize_top  1.234*** 0.942*** 0.942*** 
  (1.012) (1.013) (1.013) 

Genderfemale:support    1.063*** 
    (1.016) 

Observations 116,346 116,346 116,346 116,346 
Log Likelihood -886,690.500 -885,322.500 -880,343.000 -880,335.600 
LR Test 935.024*** (df = 62) 3,671.098*** (df = 65) 13,630.030*** (df = 66) 13,644.910*** (df = 67) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
 
 
Table 19. Weibull regressions from Psychology (Entire Periods) 

 (1) (2) (3) (4) 

Genderfemale 0.908*** 0.924*** 0.941*** 0.954*** 
 (1.008) (1.008) (1.008) (1.009) 

support   0.390*** 0.400*** 
   (1.009) (1.013) 

early_product_top  1.954*** 1.661*** 1.662*** 
  (1.016) (1.015) (1.015) 

early_c5_top  1.309*** 1.322*** 1.323*** 
  (1.013) (1.013) (1.013) 

early_teamsize_top  0.793*** 1.059*** 1.059*** 
  (1.013) (1.013) (1.013) 

Genderfemale:support    0.954*** 
    (1.016) 

Constant 13.414*** 12.640*** 12.780*** 12.751*** 
 (1.116) (1.115) (1.110) (1.110) 

Observations 116,346 116,346 116,346 116,346 
Log Likelihood -294,723.400 -293,243.900 -287,852.100 -287,847.800 
chi2 3,599.727*** (df = 62) 6,558.876*** (df = 65) 17,342.400*** (df = 66) 17,350.960*** (df = 67) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
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Table 20. Cox proportional hazard regressions from Psychology (2000-2012) 
 (1) (2) (3) (4) 

Genderfemale 1.121*** 1.107*** 1.093*** 1.092*** 
 (1.012) (1.012) (1.012) (1.015) 

support   2.562*** 2.560*** 
   (1.012) (1.021) 

early_product_top  0.420*** 0.512*** 0.512*** 
  (1.027) (1.028) (1.028) 

early_c5_top  0.936*** 0.898*** 0.898*** 
  (1.020) (1.020) (1.020) 

early_teamsize_top  1.357*** 0.962** 0.962** 
  (1.019) (1.019) (1.019) 

Genderfemale:support    1.001 
    (1.025) 

Observations 54,238 54,238 54,238 54,238 
Log Likelihood -321,076.900 -320,296.400 -317,624.100 -317,624.100 
LR Test 602.618*** (df = 13) 2,163.607*** (df = 16) 7,508.358*** (df = 17) 7,508.360*** (df = 18) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
 
Table 21. Weibull regressions from Psychology (2000-2012) 

 (1) (2) (3) (4) 

Genderfemale 0.906*** 0.916*** 0.929*** 0.929*** 
 (1.010) (1.010) (1.010) (1.012) 

support   0.462*** 0.463*** 
   (1.010) (1.016) 

early_product_top  2.073*** 1.709*** 1.709*** 
  (1.023) (1.022) (1.022) 

early_c5_top  1.059*** 1.092*** 1.092*** 
  (1.016) (1.016) (1.016) 

early_teamsize_top  0.769*** 1.029* 1.029* 
  (1.016) (1.015) (1.015) 

Genderfemale:support    1.000 
    (1.020) 

Constant 15.005*** 14.424*** 16.283*** 16.282*** 
 (1.021) (1.021) (1.020) (1.021) 

Observations 54,238 54,238 54,238 54,238 
Log Likelihood -103,058.500 -102,242.700 -99,390.320 -99,390.320 
chi2 1,984.912*** (df = 13) 3,616.555*** (df = 16) 9,321.375*** (df = 17) 9,321.375*** (df = 18) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
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B5.6 Sociology 
 
Table 22. Cox proportional hazard regressions from Sociology (Entire Periods) 

 (1) (2) (3) (4) 

Genderfemale 0.928*** 0.930*** 0.927*** 0.911*** 
 (1.017) (1.017) (1.017) (1.018) 

support   1.907*** 1.718*** 
   (1.030) (1.044) 

early_product_top  0.624*** 0.649*** 0.648*** 
  (1.037) (1.037) (1.037) 

early_c5_top  0.843*** 0.812*** 0.813*** 
  (1.028) (1.028) (1.029) 

early_teamsize_top  1.064** 0.894*** 0.892*** 
  (1.029) (1.030) (1.030) 

Genderfemale:support    1.216*** 
    (1.057) 

Observations 21,232 21,232 21,232 21,232 
Log Likelihood -145,864.500 -145,739.200 -145,531.000 -145,524.800 
LR Test 446.501*** (df = 62) 697.216*** (df = 65) 1,113.506*** (df = 66) 1,125.994*** (df = 67) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
 
 
Table 23. Weibull regressions from Sociology (Entire Periods) 

 (1) (2) (3) (4) 

Genderfemale 1.076*** 1.074*** 1.075*** 1.095*** 
 (1.016) (1.016) (1.016) (1.017) 

support   0.531*** 0.587*** 
   (1.029) (1.041) 

early_product_top  1.589*** 1.525*** 1.525*** 
  (1.035) (1.035) (1.035) 

early_c5_top  1.185*** 1.227*** 1.226*** 
  (1.027) (1.027) (1.027) 

early_teamsize_top  0.941** 1.117*** 1.119*** 
  (1.027) (1.029) (1.029) 

Genderfemale:support    0.829*** 
    (1.054) 

Constant 15.106*** 14.077*** 13.996*** 13.974*** 
 (1.196) (1.195) (1.193) (1.193) 

Observations 21,232 21,232 21,232 21,232 
Log Likelihood -53,758.460 -53,625.490 -53,405.120 -53,398.770 
chi2 1,055.973*** (df = 62) 1,321.904*** (df = 65) 1,762.654*** (df = 66) 1,775.351*** (df = 67) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
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Table 24. Cox proportional hazard regressions from Sociology (2000-2012) 
 (1) (2) (3) (4) 

Genderfemale 0.908*** 0.901*** 0.894*** 0.879*** 
 (1.024) (1.024) (1.024) (1.025) 

support   1.958*** 1.794*** 
   (1.038) (1.060) 

early_product_top  0.516*** 0.542*** 0.542*** 
  (1.055) (1.055) (1.055) 

early_c5_top  0.923** 0.872*** 0.871*** 
  (1.042) (1.042) (1.042) 

early_teamsize_top  1.171*** 0.933* 0.931* 
  (1.040) (1.043) (1.043) 

Genderfemale:support    1.154** 
    (1.074) 

Observations 11,517 11,517 11,517 11,517 
Log Likelihood -64,838.370 -64,732.020 -64,591.780 -64,589.750 
LR Test 213.755*** (df = 13) 426.453*** (df = 16) 706.942*** (df = 17) 710.993*** (df = 18) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
 
Table 25. Weibull regressions from Sociology (2000-2012) 

 (1) (2) (3) (4) 

Genderfemale 1.083*** 1.090*** 1.095*** 1.111*** 
 (1.019) (1.019) (1.019) (1.020) 

support   0.572*** 0.615*** 
   (1.031) (1.048) 

early_product_top  1.729*** 1.650*** 1.651*** 
  (1.045) (1.044) (1.044) 

early_c5_top  1.065* 1.115*** 1.115*** 
  (1.034) (1.034) (1.034) 

early_teamsize_top  0.876*** 1.058* 1.060* 
  (1.032) (1.034) (1.034) 

Genderfemale:support    0.889** 
    (1.059) 

Constant 10.415*** 10.082*** 10.187*** 10.126*** 
 (1.041) (1.041) (1.041) (1.041) 

Observations 11,517 11,517 11,517 11,517 
Log Likelihood -23,159.420 -23,048.710 -22,899.690 -22,897.580 
chi2 525.179*** (df = 13) 746.608*** (df = 16) 1,044.655*** (df = 17) 1,048.860*** (df = 18) 

 Exponentiated coefficients; Standard errors in parentheses.  p<0.1; **p<0.05; ***p<0.01 
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