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Abstract 

How do scientists address failures when producing experimental data? While the social 

dynamics of failures at the epistemological level – such as questioning or defending well-

established experiments and theories upon failures – are well examined, how scientists 

engage with difficulties in producing experimental data at day-to-day bench work has been 

less understood. Moreover, such failures from mundane bench work can precede the much-

studied epistemological interplays involving evaluation and readjustment of theories and 

hypotheses. We explore these “low-level data generation” processes based on ethnographic 

observations from material science labs to understand the work of scientists addressing 

failures in data production. Analyzing these failures provides a strategic site for the 

sociology of science as it not only addresses potential bottlenecks in production of science 

but also reveals problem-solving processes, skills, and the interplay between 

epistemological and material dimensions and the degree to which the knowledge is 

situated. We find that scientists’ situational knowledge of empirical data production work 

is essential in identifying and searching for causes and solutions to failures. Secondly, due 

to the situated nature of data production, we find that necessary information for addressing 

these failures is primarily communicated and shared among lab members who are engaged 

in similar tasks. Thirdly, despite the aforementioned benefit of knowledge spillover, we 

find that much of the failure-coping process is carried out in isolation, both physically and 

cognitively. Lastly, our findings reveal an interesting aspect of how scientists attribute 

causes to failures. Scientists tend to internalize failures initially, blaming themselves before 

attributing these failures to external factors. Based on our in-depth observations and 

conceptualizations, we introduce the “Cycle of Doubt,” a model that generalizes the 

failure-coping process. We provide a detailed discussion of the theoretical and practical 

implications of our findings.  

Keywords: Data Production Failure, Situated Knowledge, Lab Ethnography, Attribution Behavior  
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The Cycle of Doubt: How Scientists Cope with Uncertainties in Producing Data 

1. Introduction  

The production of data to study nature is a critical aspect of modern science. However, data 

production work, such as preparing samples, conducting chemical syntheses, and operating 

instruments, is riddled with potential failures (Collins and Harrison 1975; Collins 1992; Delamont 

and Atkinson 2001; Lynch 1985; Wylie 2019). These can emerge in a variety of, often unexpected, 

ways, creating a burden for scientists as they must make a series of decisions to try to overcome 

production interruptions and failures (Barley and Bechky 1994; Collins and Harrison 1975; Doing 

2004).  Studying failure in science has attracted many scholars as it represents a critical juncture 

where theories can be readjusted and reexamined. Numerous studies have highlighted the 

epistemological aspects of failure, articulating how scientists reassess and modify hypotheses and 

theories in response to experimental anomalies (Collins 2010a; Kuhn 1962; Latour and Woolgar 

1979). However, we argue that technical failures in data production – such as sample preparation, 

chemical synthesis, and instrument operation – can precede and operate independently from these 

theory-driven epistemic adjustments. By adopting a sociology of work perspective, we treat the 

scientific work of bench scientists as a variable and examine how scientists address data production 

failures, which we define as “the failures and interruptions encountered while producing data for 

their research.” Based on two years of ethnographic observation of material scientists in their 

daily work settings, we provide a systematic analysis of the process by which scientists cope with 

routine failures in producing experimental data. 

Recognizing data production failure can not only help identify significant bottlenecks in 

knowledge production but also provide insights into the social dynamics of scientific work. We 

are especially interested in how data production failure is constructed, recognized, and addressed 

and the extent to which this process can be shaped by scientists’ current and past interactions with 

their social and physical settings. In doing so, we explore the problem-solving skills involved, the 

role of the lab structure, and how failure-coping processes are structured by characteristics of 

failure-generating tasks and their attributions. Furthermore, we investigate how scientists search 

for possible causes and solutions when encountering failures. Based on our in-depth observations 
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and conceptualizations, we present a model named the “Cycle of Doubt,” which generalizes the 

failure-coping process.  

Addressing these questions requires us to directly observe the production settings in which 

scientists generate data. Using a sociology of work perspective (Barley 2020; Becker 2002; Orr 

1996), we conducted two years of ethnographic observation of two material science labs at a 

research-intensive university in the US. Direct observations of failures and the failure-coping 

process in real time as well as informants’ accounts of recent and on-going failure experiences 

allowed us to provide a detailed examination of how laboratory scientists handle data production 

failures in their day-to-day work. Our findings first suggest that data production failures are very 

common and occur for a variety of reasons, such as instability of a production process, instrument 

malfunction, material quality issues, or inadequate procedure. The failure-coping process involves 

the identification of data production failure, making sense of failure, searching for potential causes 

and solutions, and iterations of this process until scientists “solve” the problem or simply move on 

to the next tasks. This process, which we describe as the “Cycle of Doubt,” is articulated in detail 

in the Findings section. What we found intriguing was the high frequency of failures and the 

substantial time spent addressing them. Moreover, identifying the exact cause of the failure was 

often difficult, and in some cases not even a primary goal of the problem solving process. In the 

face of the highly uncertain and unstable production process, useful feedback during problem-

solving failure was scarce and ambiguous. In such an environment, we find three intriguing 

features of the failure-coping process.  

Firstly, we find that scientists’ situational knowledge of empirical data production work is essential 

in identifying and searching for causes and solutions to failures. Drawing on situated action 

literature (Lave and Wenger 1991; Tyre and Von Hippel 1997), we argue that scientists’ working 

knowledge in producing data is situated around their production setting. Situational knowledge of 

experimental scientists includes the ability to precisely make use of local and historical information 

to detect, make sense of, and search for solutions to data production failures. When the information 

generated around failure was not sufficient, some scientists would devise sub-experiments to 

generate non-research-related information, a key feature of the failure-coping process. However, 

it is important to note that the ability to make use of this knowledge, in particular, devising sub-
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experiments, varied by production settings. From our observations in labs staffed by graduate 

students and postdocs, this situational knowledge was often used with formal scientific knowledge 

to address data production failures. From the perspective of the work organization of science, we 

anticipate that labs with varying numbers of technicians, whose main task is to maintain 

instruments and produce experimental data (Barley and Bechky 1994; Doing 2004; Latour and 

Woolgar 1979), will display different compositions of formal and situational knowledge among 

their lab members. 

Secondly, due to the unstable data production environments observed in many material science 

labs and the critical role situational knowledge plays in addressing failure, we find that scientists 

who share data production tasks with other members of the lab are more effective in addressing 

failures. The tacit nature (Collins 2010b) and stickiness of the information (Von Hippel 1994) from 

data production work made communications and knowledge spillovers much more conducive 

among scientists who work with the same materials and instruments in shared spaces. This finding 

aligns with prior studies that emphasize the importance of dense networks with strong ties for 

transmitting tacit knowledge for executing ideas (Hansen 1999), contrasting with the benefit of 

diverse networks for generating novel ideas (Granovetter 1973), thus providing important insights 

into the organization of work in science.  

Thirdly, despite the aforementioned benefit of knowledge spillovers, we find that most data 

production failures are addressed individually and locally. While STS literature has emphasized 

the social construction aspects of epistemic failure (Collins 1992; Collins 1975; Latour 1987), our 

observations suggest a distinction between the socialization of epistemic findings and the isolation 

of technical problem-solving. Scientists routinely engage in collective discussions about results 

and interpretations, but according to our observations, troubleshooting data production failures 

remains a localized, individual effort. Whether it is because these failures are seen as too specific 

to share (Keating, Cambrosio and Mackenzie 1992) or because scientists worry about looking 

incompetent (Ravetz 1971), future research should explore this further.  
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Lastly, we find an intriguing behavioral pattern that governs scientists searching for potential 

attributions to failures. Our participants tended to initially search for failure attributions over which 

they had complete autonomy, which we categorized as an internal attribution. Examples include 

questioning their direct roles in data production failure. Only a handful of failure-solving processes 

started with external attribution, such as questioning published techniques or the quality of 

materials prepared by collaborators. Scientists internalizing failures may be attributed to 

enculturation (Delamont and Atkinson 2001; Wylie 2019), social norms (Merton 1973), their prior 

beliefs (Dunbar 1995; Klahr 2002), as well as the stability of theories at hand along with their 

surrounding social and institutional contexts (Collins 1998; Collins 1981; Pinch 1985). However, 

it is important to note that such internalization of failure can often explain the delay in identifying 

false research that leads to a replication and reliability crisis (Reich 2009). 

This paper first reviews relevant studies from STS, sociology of work, and cognitive science that 

provide useful insights for our research questions and methodologies. We then discuss our methods 

and data collection, followed by our findings on how scientists address data production failures. 

We also introduce a behavioral model developed based on our observations, which we call the 

“Cycle of Doubt.” We then discuss the implications of our findings and potential research avenues 

for the organization of work in science. 

 

2. Literature and Research Questions  

2.1 Production of data as craft and routine 

In this paper, we define data production as tasks involving sample preparation, making materials, 

and running instruments by bench scientists. There is no doubt that these tasks are foundational in 

modern empirical science. In an analysis of contribution statements for almost 80,000 authors from 

PLOS ONE, Sauermann and Haussler (2017) find that half of the authors, and 86 percent of first 

authors, were engaged in data production. Data production is both a core and often highly uncertain 

activity of scientists. Bench scientists commonly face frequent and unpredictable production 

failures and interruptions in producing this data, exacerbating the time demands (Cambrosio and 

Keating 1988; Collins 1992; Delamont and Atkinson 2001; Fujimura 1987; Jordan and Lynch 
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1992; Lynch 1985; Peterson 2015; Wylie 2019). Data production done in an “open system,” such 

as chemical synthesis, is notoriously troublesome. Even in what may seem a well-controlled 

environment, scientists often must “babysit” instruments by monitoring potential signs of failures. 

The following quotes from these prior studies provide some examples of the time involved and 

types of data production failures. “In the beginning, the first task at hand was actually to express 

the protein and that was where we hit the roadblock. As a consequence, it took her two-and-a-half 

years to solve a problem that was originally envisaged as a starting point for the doctorate” 

(Delamont and Atkinson 2001). “Now I've gone through a lot of the problems. I've had it go wrong, 

I've lost samples, it's cost me a whole week, I've had to start all over again” (Jordan and Lynch 

1992). “In spite of Harrison’s experience and excellent contacts, it took him six months from the 

assembly of the parts to the final ironing out of the faults to make Jumbo work” (Collins 1992). 

Thus, it is not surprising that a substantial share of graduate training in laboratory science involves 

getting familiar with the procedures and materials at the bench (Campbell 2003; Delamont and 

Atkinson 2001; Peterson 2015). These studies have emphasized the importance of having 

(Peterson 2015) or acquiring (Delamont and Atkinson 2001; Doing 2004) craft and tacit 

knowledge (Collins 2010b). Even tacit knowledge may not be sufficient when the cause of failure 

is related to the nature of the unstable data production process (Lynch 1985). For example, 

producing a good crystal from a complex molecule in structural biology can take months or even 

years (Ramakrishnan 2018). Thus, examining how scientists address technical troubles allows us 

to understand different problem-solving skills and how contextual factors shape this process. 

It is thus natural to ask to what extent can the production of data in laboratory science be 

rationalized. By rationalization of data production, we mean formalization and standardization in 

the work of producing data (Walsh and Lee 2015), such as the codification of experimental 

protocols or developing/purchasing research instruments that would increase precision by partly 

automating otherwise precarious tasks. One way to rationalize work is to embed such tasks into 

organizational memory in the form of organizational routines (Argote and Darr 2000; Cyert and 

March 1963; Nelson and Winter 1981; Simon 1947). A somewhat related concept from the STS 

perspective is the “standardized package” (Fujimura 1988; Fujimura 1992), which provides 

standardized practices of techniques, research materials, and instruments. Another related concept 

is the “black-box” (Latour 1987; Latour and Woolgar 1979), which provides theory and consensus 
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laden practice in the forms of standardized research instruments or techniques. To the extent that 

these work practices become a part of the organizational routine (Nelson and Winter 1981), one 

can expect significant reductions in training costs and time incurred by research labs that are often 

plagued by the depreciation of organizational knowledge due to high turnover rates among 

members (Knorr-Cetina 2009).  

However, rationalizing data production work can be difficult for several reasons. One major 

obstacle is physical constraints (Bruyninckx 2020; Cambrosio and Keating 1988; Jordan and 

Lynch 1992). For example, chemical synthesis in an “open system” is prone to interference from 

local parameters, such as atmospheric gas, room temperature and humidity, type of tools they use, 

conditions of materials, and even seemingly trivial permutation of tasks. Successful data 

production in such a setting means having lower variance over repeated trials. Rationalization of 

work may not necessarily be more effective in “closed systems”, such as those that are partly 

automated through pre-programmed chemical reactors and instruments, as previous studies on the 

work of technicians and engineers suggest that production failures are common, and codified work 

procedures provide little value when addressing technical failures (Barley 1988; Kusterer 1978; 

Orr 1996; Shapin and Schaffer 1985). This could be because many standardized practices are often 

designed for specific uses and may not work in many situations and settings different from their 

original purpose (Lave and Wenger 1991; Suchman 2006; von Hippel and Tyre 1995). In the case 

of scientists, since they are pushing the boundaries of knowledge, they often find themselves 

pushing against the limits of the instruments. Also, the normative emphasis on originality (Merton 

1957) may lead scientists to work on non-redundant research, which is often accompanied by local 

variations and improvisations of techniques (Jordan and Lynch 1992; Knorr-Cetina 2009). 

Moreover, while automation can replace some manual tasks, scientists need to constantly address 

the machines’ erratic behaviors (Barley and Bechky 1994; Bruyninckx 2020; Ribeiro et al. 2023). 

Sometimes, scientists may view rationalizing data production tasks as trivial and costly. Even if 

they have successfully standardized data production tasks, they may not find publishing their 

methods worthy of their time and effort (Cambrosio and Keating 1988). Thus, many important 

data production techniques remain local and tacit, facing a risk of disappearing with a turnover 

(Argote and Darr 2000; Knorr-Cetina 2009). 
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2.2 Situational knowledge in failure-coping process 

Unlike industrial manufacturing work, laboratory science often involves combining materials and 

techniques in unusual ways (Barley and Bechky 1994), making standardized techniques less useful 

for labs that are conducting novel research (perhaps especially novel materials). Situated learning 

theory argues that knowledge used to solve a problem is situated in the sense that it depends on 

the social and physical context in which the problem occurs (Lave and Wenger 1991; Suchman 

2006). The situated action theory provides useful insights into the management of troubles in such 

work settings (Barley and Bechky 1994; Barley 1988; Lave and Wenger 1991; Orr 1996; Suchman 

2006; Tyre and Von Hippel 1997). Relatedly, the sociology of work literature (Harper 1987; 

Kusterer 1978) describes the role of situational knowledge (“working knowledge”) in managing 

technical troubles in a production site. For example, Kusterer (1978)’s study of manufacturing 

workers on a production line showed that both material-specific and machine-specific knowledge 

is necessary for uninterrupted production. The acquisition and application of this working 

knowledge are further elaborated by prior studies on the work of technicians (Barley 1988; Doing 

2004; Orr 1996). Just as technicians are responsible for transforming physical objects into 

symbolic representations (Whalley and Barley 1997; Zuboff 1988), laboratory scientists transform 

organisms and chemical materials into a symbolic representation as data via various processes and 

scientific apparatus (Collins 1998; Latour and Woolgar 1979; Pinch 1985). Managing these tasks 

requires careful attention to the idiosyncrasies of materials and instruments. What is important is 

that this working knowledge is used to make sense of produced data, in particular, for maintenance 

and diagnoses of troubles (Barley and Bechky 1994; Whalley and Barley 1997). Thus, scientists’ 

knowledge generated by performing such tasks, whether they are in the form of tacit or codified 

knowledge, is situated in the physical context in which productions occur.  

 

2.3 Situational knowledge in the production of science 

Situational knowledge is particularly important in laboratory science due to two different forces 

that create variations in techniques and methods of producing data. These variations can arise from 
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the normative emphasis on originality (Merton 1957), which discourages scientists from pursuing 

repetitive projects, resulting in increasing variations in the data production settings both within 

and across laboratories. Variations can also happen during the adoption of standardized methods 

as lab members transform standardized production methods into situational knowledge in the form 

of local and informal routines (Cambrosio and Keating 1988; Jordan and Lynch 1992). These 

frequent changes in the production setting include constant modification and improvisation of 

scientific apparatuses and the production and testing of new materials. Under such temporal 

instability, situational knowledge may become essential for maintaining uninterpreted data 

production. A key insight from situated action theory (Lave and Wenger 1991; Tyre and Von 

Hippel 1997) is that it provides a powerful lens for examining how scientists’ past and present 

interactions with their social and physical environments shape the ways in which data production 

failures are constructed, recognized, and addressed.  

Previous studies on lab technicians (Barley and Bechky 1994; Bruyninckx 2020; Doing 2004) 

document how situational knowledge is put into action to solve technical troubles in bench science. 

For example, lab technicians may employ a wide range of available heuristics, which are embedded 

in and acquired through interactions with their production settings, to detect data production 

failures. It is interesting to note that these studies have primarily focused on technicians working 

in labs with a division of labor that clearly distinguishes technicians’ work from that of scientists. 

Meanwhile, many basic science labs in US research universities are staffed with postdocs and 

graduate students who may be responsible for both technical and scientific aspects of the 

laboratory work while solely being evaluated by their formal scientific knowledge (Hackett 1990; 

Hagstrom 1964). It is unclear how situational knowledge addresses data production failures in labs 

without dedicated technicians. In this sense, our observation of department-level material science 

labs may provide an interesting opportunity to observe how situational knowledge and formal 

scientific knowledge (or both) are used to address data production failures. 

2.4 Structure of the failure-solving process 

Lastly, we examine the structure of the failure-solving process, which can include four key stages: 

detection, attribution, solution generation, and learning from failure. While previous research has 

shown how scientists address experimental failures through iterative representation updates and 
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problem reframing (Barley and Bechky 1994), less is known about how the failure-solving process 

can be influenced by failure attribution and the characteristics of tasks that generate failure. 

Meanwhile, from the perspective of scientists, an important question is how to make a transition 

more efficiently from a wasteful search to a productive search when troubleshooting failures. To 

better understand this issue, we draw on insights and findings from the psychology literature on 

problem-solving in the context of science (Klahr 2002; Klahr and Simon 1999; Simon, Langley 

and Bradshaw 1981).  

These studies have shown that solving scientific problems involves selective search using either 

domain-specific or general heuristics over a large space of possibilities, suggesting that the process 

of scientific discovery is not entirely unique but instead is a special case of the human problem-

solving process (Simon 1992). Dunbar (1995)’s study shows that scientists use different heuristics 

to address inconsistent evidence or experimental failures, with substantial heterogeneity in the uses 

of different search modes by type of problem and social structure of labs. The study points out that 

scientists tend to search locally when addressing experimental tasks (what we call data production 

failures). Dunbar also reports that around 60% of the experiments had experienced technical 

problems, highlighting the need to address data production failure to increase the pace of science. 

Studies by Gorman (1986) and Klahr and Dunbar (1988) found that the presence of data error can 

slow down problem-solving by introducing another layer of uncertainty, leading to potentially 

wasteful replications of flawed experiments (a problem solving heuristic of “repeat and hope for 

the best”). Because of high uncertainty, it is plausible that some unknown noise caused the failure 

and repeating the same process might, this time, produce a successful outcome. It is unclear when 

scientists should break out of this repeat-and-hope-for-the-best mode and change search strategies 

to overcome data production failure. 

The prior studies from the STS, sociology of work, and pscyhology literatures suggest that data 

production failure is common yet difficult to solve, and that situational knowledge may be crucial 

in solving failures. Moreover, understanding the structure of the failure-solving process may be 

key to improving the data production process, which is essential for increasing the pace of science. 

Building on this perspective, we ask the following specific questions about scientists addressing 

data production failures: 1) how do scientists detect data production failures? 2) what are the 
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different types of data production failures? 3) what are the common causes of the failures and how 

do scientists construct failure attributions? 4) what are common solutions, and how are they 

applied? 5) what are the conditions that generate faster solutions? The next section provides a 

detailed description of our empirical methods. 

 

3. Methods and data 

3.1 Methods  

We conducted two-years of ethnographic observation and unstructured interviews with doctoral 

students, post-docs, and faculty in university materials science labs. Ethnographic studies are a 

long-established method of understanding the social activities of scientists (Delamont and 

Atkinson 2001; Fujimura 1987; Knorr-Cetina 1981; Latour and Woolgar 1979; Owen-Smith 

2001). In contrast to previous science studies that focused on social interaction in lab meetings, 

our observations took place in the laboratories where scientists’ work of producing data normally 

occurs. We use this approach for two main reasons. First, while observing social interactions is 

important to understand the social construction of knowledge, data production can often precede 

meaningful discussions around it.1 Thus, it is important for us to directly observe the work of 

scientists to gain a contextual understanding of their work processes (Orr 1998) in order to avoid 

“a version of the event which has been eroded of all contingent circumstances” (Latour and 

Woolgar 1979). The second benefit of our approach comes from the prevalence of data production 

failures in laboratory science, which spares us from picking a project and observing it from start 

to end. While we did not observe the entire life cycles of all projects, the external validity of 

research is enhanced by visiting two different labs, spanning multiple projects. Since these labs 

varied in size, structure, and studied materials, this also allows us to observe potential 

organizational heterogeneities in searching for solutions (Dunbar 1995).   

 
1 This is particularly evident in routine but essential aspects of data production, such as sample preparation, where 
the work is critical to research but often decoupled from theoretical problems being considered by the scientist. 
While challenging, failures in these tasks—such as an inability to produce a usable sample—do not necessarily 
undermine the validity of the underlying theory. 
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3.2 Data 

Our data come from two rounds of ethnographic observations in two material science labs from a 

research-intensive university in the US. The first round of observations lasted from November 

2018 to February 2020, cut short due to the Covid Pandemic. The second round of observations 

lasted from February 2021 to March 2022. The observations focused on failure-solving activities 

while running experiments. Observational data collection relied primarily on the “thinking-aloud 

protocol” (Newell 1967) where scientists were asked to talk out loud describing their research 

activity in real time, including their failure-solving processes. While our field visits lasted, on 

average, around two hours, we followed four scientists from two different labs for a considerable 

period of time. Thus, we were able to come back to any data production failures that weren’t 

resolved (many failures took days, weeks, and even months) at the site by following our 

participants for months and years. Informal interviews were periodically conducted at the site 

asking them how they addressed the failures. These observations were recorded through notetaking 

and tape-recording and transcribing. These field notes were used to generate failure-solving scripts 

that were coded and analyzed to understand how scientists interpret and respond to data production 

failures. The failure-solving scripts were coded in an Excel spreadsheet. The spreadsheet includes 

the entire entry of data production failures that we observed at the site or that were reported by our 

participants. For each data production failure entry, the following items were coded: date, lab, 

location, project, participant name, raw texts from field notes, instruments and materials involved 

in the failure, whether the failure was observed on-the-spot versus reported later by our 

participants, the familiarity of the failure-generating tasks, failure attribution, and the solution used 

to solve the failure. Further analysis that required examining the occurrence and co-occurrence 

among these items was done using the first author’s own Python script. In addition to reporting 

qualitative evidence in support of our inferences, we also make use of what Becker (1958) refers 

to as quasi-statistics to summarize broad variations in the incidence of different types of processes 

and outcomes. 

3.3 Sites 

We chose materials science labs as the research site for several reasons. First, materials science 

involves creating and studying new materials, unlike other disciplines that focus on understanding 
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natural phenomena. At the same time, the high level of difficulties and uncertainties involved in 

creating and testing materials also suggests that materials scientists are situated in a problem-

solving space that must accommodate both the logics of scientific discovery and the logics of 

troubleshooting technicians. This dual nature, coupled with the fact that there is high visibility of 

the work, makes the material science labs a strategic site to study data production failures.   

The two material science labs that we visited provide interesting variations in research areas, 

routine work, and how they organized their work. In this material science department, labs are 

broadly classified by their scientists into either “wet” labs or “dry” labs, depending on whether the 

material system they study has more fluid (wet) or solid (dry) characteristics. The first lab is 

involved in research related to producing and studying synthetic and biological polymers and 

particles in fluids. By this standard, our participant called their lab a typical “wet” lab, with much 

of their work involving complex chemical synthesis involving fluid materials, and hence we will 

refer to this as Wet Lab. During the period of our field visit, Wet Lab had 6 members: 1 faculty 

supervisor, 1 postdoc, 3 doctoral students, and 1 master’s student. The material scientists of Wet 

Lab spend most of their bench work in three different physical spaces: the preparation room, 

synthesis room, and optics room. The preparation of samples and materials that do not involve 

chemical synthesis was done in the preparation room. Chemical synthesis was done in the synthesis 

room where each member had their own designated fume hood. As with most of the other material 

science labs, carefully made materials would undergo various characterization tests. One specialty 

of Wet Lab was their ability in making new characterization techniques using optical instruments, 

which were done in the optics room. The optics room also housed various lab-built characterization 

instruments. Other standard off-the-shelf characterization instruments were located in the 

preparation room.  

One interesting characteristic of Wet Lab was that its member pursued their own projects, which 

were quite distinct and had low task overlap with their other lab members. For example, while one 

participant in Wet Lab would spend most of her time performing chemical synthesis, another 

participant would spend most of his time devising new characterization techniques. However, this 

was not indicative of the lab’s division of labor, instead, this was more indicative of their low task 

overlap. In fact, one participant from Wet Lab told us that his supervisor demands every member 
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to know a little bit of everything, especially, tasks involving chemical synthesis, building and re-

building research instruments, characterization of molecules, and programming problems.  

An equal amount of field observation came from the second lab. By material scientists’ standards, 

this second lab was a “dry” lab, whose research involves making and studying organic-inorganic 

hybrid materials, and hence we will we refer to this as Dry Lab. Dry Lab was a mid-size lab with 

10 members: 1 faculty supervisor, 2 postdocs, and 7 doctoral students. The lab also had a constant 

influx of undergraduate research assistants. Unlike Wet Lab, Dry Lab’s routine work was highly 

concentrated on chemical reactions using large lab-built reactors. The lab was primarily interested 

in developing organic-inorganic hybrid materials using vapor phase infiltration (VPI), a variant of 

atomic layer decomposition (ALD). Most of the benchwork from Dry Lab was done in three main 

physical spaces: the reactor room, characterization room, and preparation/synthesis room. Most 

lab members spend their time in the reactor room as it houses various chemical reactors built or 

modified by lab members. While there were many variations in their design, all reactors had a 

chamber, a large metal container into which a base material (substrate) was put. For example, in a 

VPI reactor, organic material is placed into the chamber, and inorganic material (precursor) is 

injected into the chamber through a pneumatic system based on a pre-programmed method. The 

variation in design among reactors results from the type of substrates that researchers want to be 

“baked”, and more importantly, the type of data generated during the reaction process. Members 

of Dry Lab also spent a substantial amount of their time in the characterization room. Unlike their 

reactors, most characterization instruments were “off the shelf” types, purchased from instrument 

manufacturers. This reflects Dry Lab’s research orientation in making new materials, which 

contrasts with Wet Lab’s research orientation, which encompasses the devising of new 

characterization methods. Unlike Wet Lab, the members of Dry Lab spent little time in the 

preparation/synthesis room. While there were a few fume hoods in the room, lab members would 

rarely perform any chemical syntheses, as most of base materials (substrates) they used were made 

by their collaborators from the Chemistry department or other “wet” labs from the Material Science 

department.  

In terms of organization of the work, Dry Lab was highly specialized as a whole, as the lab was 

mainly focused on making novel functioning materials using specialized chemical reaction 
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methods. The work overlap was high as lab members would often share one of their core 

instruments. Meanwhile, specialization was observed in terms of how each lab member was trained 

in operating different characterization techniques. Because Dry Lab would often need to use shared 

facilities to have access to high-functioning characterization equipment, such as X-ray 

photoelectron spectroscopy (XPS), selected members were trained to operate them. Such 

specialized training reflects a selective division of labor operated in Dry Lab. Where lab members 

would jointly share chemical reactors (making of materials), some characterizations 

(understanding of materials) were performed only by specially trained members. The relatively 

high overlap of tasks while retaining some division of labor contrasts sharply with Wet Lab’s 

organization of work, characterized by low work overlap and the lab’s emphasis on every member 

knowing a little bit of everything. Both labs are interested in making and understanding novel 

materials, but they differ in their research topic, work routine, and work organization. The routine 

work done in Wet Lab can be considered as an “open system”, where the data production process 

is highly vulnerable to external interferences (i.e., chemical synthesis done in a fume hood). 

Meanwhile, much of the data production from Dry Lab is conducted within chemical reactors, or 

a “closed system.” 

It is important to emphasize that all members across both Dry Lab and Wet Lab were highly skilled 

and professional in their roles as experimental scientists. The “failures” observed during our study 

were not a result of any incompetence or lack of diligence on their part. In fact, there was a state 

of consensus among most prominent material scientists that such challenges are an integral and 

often expected component of scientific works. As one piece of corroborating evidence, we had the 

opportunity to present our initial findings to a National Academies study panel on data analytics 

for material science. In response to our presentation, the material science panelists, all highly 

eminent scientists, volunteered that data production failures were very common bottlenecks in 

their own labs. While there are likely individual differences in problem solving skills, the 

routineness with which people in these labs, and in the field more generally, approached these 

failures suggested that it is reasonable to focus on the contextual and structural factors, such as 

task characteristics,  task familiarities, and the degree of task overlap, for understanding the 

problem solving process (Dunbar 1995; Newell and Simon 1972). 
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4. Results 

4.1 Construction of failure 

Recognizing failures  

Our observations suggest data production failures were common. We observed 38 instances of 

data production failure during our 36 on-site observations. This number excludes those that were 

brought up during discussions with our participants. Since our field visits lasted around 2 hours on 

average, our participants were interrupted once every 2 hours during their benchwork. Thus, 

troubleshooting failures took up a significant portion of their time. Some failures were easily 

resolved, while others took days or months to be resolved.  

Data production failure could happen due to a wide range of reasons, including but not exclusively 

due to sample impurity or contamination, instability of the production process, instrument failure, 

and inadequate experimental design. As these failure attributions were often identified in 

retrospect, troubleshooting often started with recognizing that their data production process may 

have failed. Detecting data production failures involved both situated and formal scientific 

knowledge. For example, our participants would recognize data production failures by making use 

of their sensory cues (Barley and Bechky 1994; Bruyninckx 2020) or by noticing anomalies in 

figures, graphs, and data tables. The ability to recognize data production failures varied according 

to our participants’ task experience with specific instruments or material systems (Kusterer 1978; 

Simon 1947; Suchman 2006). Some failures were relatively easy to detect, such as when 

instruments signaled warning signs or simply stopped running. Materials could burn, break, or turn 

into unexpected colors. Characterization results could also drastically deviate from the expected 

range of values, shapes, and patterns (for example, seeing a flat line across all values of the x-

axis). Meanwhile, other failure recognitions would require a more nuanced situated understanding 

of the production process. For example, experienced participants performing unstable chemical 

synthesis were able to utilize a wide range of visible cues embedded in their production settings, 

and their higher-order relationships to monitor potential data production failures.    
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Making sense of failures  

Previous studies from psychology of scienc provide useful concepts to describe the perception of 

failures. Klahr and Dunbar (1988) proposed a dual search process for scientific discovery, where 

hypotheses are generated in the hypothesis space and experiments are selected from the experiment 

space. The study reveals that the prior knowledge and the surrounding empirical context impose 

strong biases in generating and evaluating hypotheses. 2  We operationalize one of these 

surrounding empirical contexts as the task familiarity of our participants in producing data. This 

was done by classifying failure-generating tasks as either familiar or unfamiliar, depending on how 

clearly our participants understood the production recipes, procedures, and goals. 

Failures from familiar tasks 

While our participants focused on creating and studying novel materials, some processes of 

making, characterizing, and testing these materials were familiar to participants as they followed 

some regular task sequences. For example, Dry Lab focused on understanding the fundamental 

thermodynamic properties governing various chemical vapor deposition processes, involving 

routine tasks such as spin coating substrates, infiltrating metal oxides into substrates using lab-

built instruments, and obtaining inscriptions from materials with various characterization 

techniques. They also had experience building their own reactors, which involved technical 

knowledge unrelated to formal scientific training. These repetitive tasks and instrument building 

experience served as a training ground for lab members to improve their craft and develop 

heuristics for detecting and attributing failures. Similar repetitive tasks were observed in Wet Lab, 

such as routinely creating stocks of synthesized macromolecules used in different research 

projects. Lab member’s situated knowledge accumulated with formal scientific training, including 

advanced courses on characterizations such as spectrometry and microscopy. Thus, a substantial 

 
2 This Bayesian approach is somewhat compatible with Harry Collins’s concept of experimental regress Collins, 
H.M. 1981. "Son of Seven Sexes: The Social Destruction of a Physical Phenomenon." Social Studies of Science 
11(1):33-62., which describes a recursive process where, in the absence of socially agreed facts, experimenters face 
difficulties in judging whether their experimental results are valid. This issue is particularly problematic in novel 
areas, or at the “research frontier,” where the outcome of research is uncertain and scientists are dealing with novel 
phenomena. 



19 
 

share of their works was familiar to them in the sense that they had developed both situated and 

formal scientific understanding of the materials and production process.  

Our analysis from coded field notes shows that around 55% of the instances of failures happened 

while performing familiar tasks, indicating that familiarity with tasks does not necessarily prevent 

data production failures. Familiarity, however, led to lower variance and the failures from familiar 

tasks did not surprise the participants, as some of these tasks were known to be notoriously tricky. 

We provide one example from a senior doctoral student in Web Lab who spent many years 

synthesizing macromolecules. Her research involved understanding the various properties of 

polypeptides, a material system that she often produced in large quantities. The following steps 

summarize one of the intermediate steps of polypeptide synthesis: extraction of the organic phase 

of silica.  

“She retrieves a flask from the oven for her moisture-sensitive experiment. She adds water into the 

silica solution, which creates a layer that separates the organic phase (showing yellowish color) 

and the aquatic phase (clear solution). She gently taps her flask and says this will help more of the 

organic phase to rise to the top. She pours the sodium bicarbonate solution into the flask. She 

opens the valve, and the aquatic phase (that was sitting at the bottom) is poured into a beaker. She 

then adds sodium bicarbonate solution again into her flask. She shakes it, and it turns into a 

lemonade color. After 5 minutes, the layer has formed again. She quickly inserts her solutions into 

the plastic vacuum bag, which had been purged with inert gas. After adding drying agents into her 

solution, she then pours it into another flask down through a paper filter. An air pump is connected 

to the other flask to accelerate the filtering process. She says all this process must be done quickly 

to minimize exposure to oxygen.” 

As seen from this field note, the production of polypeptide synthesis is highly sensitive to both 

time and the surrounding environment. One critical step in the synthesis must be performed in a 

vacuum to minimize oxygen contact, which she tried to minimize by installing an air pump to 

accelerate the filtering process. A few days later, characterization data revealed that the 

polypeptide she made had low yields. When questioned about the cause of the failure, she 

attributed it to the precarious production process, which was particularly exacerbated by time and 

air sensitivity.  
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“Depending on the reaction, you can get high molecular weight and low molecular weight … 

Because it depends on the reaction, the reaction for making polypeptides is moisture and air-

sensitive. So, if you don’t wash (purify) very well, you can get a really low molecular weight yield. 

So, it depends on how pure your solution is.”   

Data production failures were also commonly observed from “routine” tasks in Dry Lab. Many 

members of the lab used lab-built chemical reactors that could perform various chemical vapor 

deposition reactions. The entire process could be automated with user-friendly software, allowing 

them to replicate any previously run chemical reaction. While automation allowed them to focus 

on other tasks, they would regularly stop by the reactor room to monitor temperature, pressure, 

and power gauges. This was because reactors could frequently fail in different ways and 

monitoring was necessary to identify the cause of failure and avoid wasting valuable time, as the 

entire reaction could take 2-7 days.  

Failures from unfamiliar tasks  

The remaining 45% of the data production failures occurred in unfamiliar tasks where production 

recipes, procedures, and goals were not clearly defined and understood by our participants. In some 

cases, production tasks had clearly defined production recipes and goals, but the procedures were 

ambiguous. For example, one participant from Wet Lab was trying to replicate a chemical 

synthesis of cobalt-silica from published research. She said that producing a spherical silica 

particle coating around cobalt turned out to be a tricky process, although the production recipes 

and the procedures were codified in a published manuscript. As seen from the field notes below, 

our participant and her colleague struggled with the replication process due to many unknown 

experimental parameters that were omitted from the paper.  

“So, I am basically trying to replicate this process (synthesis of silica-cobalt)… However, they 

(paper) do not explain all the processes, which makes it hard to replicate… The success rate is 

like 1-2 out of 10 … This is not for the entire process but for the final stage … Synthesis is highly 

influenced by your environment. It could be influenced by the surrounding humidity. So, for 

example, it could work in Boston but not in Atlanta or San Francisco. Also, some of the “little” 

things are not written down. Those would be like second-degree problems for them. For example, 
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they did not write down how much time they degassed when adding cobalt into water. Maybe for 

them, this wasn’t a really important part. One of our grad students contacted a lab member of this 

corresponding author to get more information.”  

Producing cobalt-silica was unfamiliar for her not only because of her inexperience in producing 

it, but the limited information she had from the published paper, which was later recovered by 

contacting the original authors of the paper. Her experience illustrates a well-documented issue 

with the incomplete codification of lab-specific knowledge  (Cambrosio and Keating 1988; 

Delamont and Atkinson 2001; Star 1983), which may be an important source of replication 

problems. But it also shows that the dichotomy between codified and tacit knowledge may be 

incomplete to explain her struggle. From Wet Lab’s point of view, what was missing from the 

manuscript included a part of the original authors’ situated knowledge, more specifically, 

parameters from the physical site on which the original synthesis was conducted. Thus, the 

problem of omitted experimental parameters was rather a matter of choice made by the original 

authors about what was important to report, rather than whether such knowledge can be codified.   

In other cases, goals may be clear but finding the right recipes could make the task difficult. This 

is well illustrated by a senior doctoral student from Wet Lab who was devising a novel method of 

characterizing polymers by using an off-the-shelf instrument to detect conformational changes. 

While he had already demonstrated the method's usefulness with polypeptides, he was now 

searching for other material systems to show the method's general applicability. He was now in 

unfamiliar territory.  

Material scientists encounter both familiar tasks as well as unfamiliar tasks in their work. Familiar 

tasks involve established methods such as known chemical synthesis to produce commonly used 

substrates, operating specialized chemical reactors, or producing data with established 

characterization instruments. Unfamiliar tasks often involved a deviation from familiar production 

recipes or procedures, in which the goal was to produce new findings. Data production failures 

were more or less equally observed from both familiar and unfamiliar tasks (although we do not 

have data on the proportion of effort devoted to each type of task).  

4.2 Attribution space   
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Once data production failures were detected, our participants generated a number of potential 

failure attributions. Based on our observations, we classify potential causes of failures into six 

different categories: instability, material quality, instrument, procedure, nature, and don’t care. 

We then refer to the selected failure attributions by our participants as the attribution space. The 

construction of the attribution space is shaped by both our participants’ underlying prior experience 

(Collins 1981), as well as the situated contexts surrounding the data production failures. Figure 1 

illustrates the relative frequency of failure, categorized by failure attributions and task familiarity. 

We discuss each of these failure attributions in the order they are shown in Figure 1.  

 

Figure 1. Failure space distribution by familiarity. Data comes from 82 instances of data production failures 
that were directly observed or retroactively recorded. Note that the relative frequency for each failure 
attribution is calculated by dividing the number of occurrences of a specific failure attribution by the total 
number of failure instances that sought either internal attributions (represented by dark grey) or external 
attributions (represented by light grey). These frequencies do not sum to 100% because failure attributions 
are not mutually exclusive, such that a single instance may involve multiple attributions.  

Instrument 

Data production failures could arise from malfunctioning or incomplete understanding of 

instruments. Such issues are labeled as instrument failure. This can occur when instruments are 

pushed beyond their capacity or when improvising instruments by integrating multiple 

subcomponents purchased from different vendors. Interestingly, instrument failure was by far the 

most common failure attribution sought from our participants among familiar failure-generated 

tasks (see Figure 1), suggesting a tradeoff between using customized instruments for high-quality 

data and the greater risk of data production failures. 
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Procedure 

Our participants often attribute failures to the inadequate experimental setup and try different 

variants of the existing procedures or change the material system. This type of failure attribution 

is categorized as procedure failure. Procedure failure shares some similarities with instability, 

which addresses inherent instabilities in data production. The key difference is that procedure 

failure can be attributed to the configuration of the data production setup that could be deliberately 

improved. Procedure attributions occur more often among non-standardized methods and reflect a 

continual improvement of the data production process in an unfamiliar space. The fact that 

procedure failures are much more common among unfamiliar tasks, as shown in Figure 1, 

corroborates this interpretation. 

Instability  

Much of data production in laboratory science involves inherently difficult production processes 

(Barley and Bechky 1994; Cambrosio and Keating 1988; Delamont and Atkinson 2001; Knorr-

Cetina 2009). We categorize this type of failure as instability failure. Examples include highly 

unstable chemical synthesis done in an open system or an infiltration process involving complex 

chemical interaction, which often renders troubleshooting difficult as they cannot always 

determine whether the failures are due to their own actions or unobserved experimental 

parameters. Production processes that require precise movements, or lack of movement (steady 

hands), would also be characterized as instability (Owen-Smith 2001; Peterson 2015). The 

variations in the output of a golf swing might be the canonical case. Thus, our participants often 

considered instability a default attribution when encountering failures from unstable data 

production processes. Note that this high rate of instability attribution, and the relatively equal 

rates between familiar and unfamiliar failures, are likely related to the inherent character of 

material science research.  Other fields might have more stable data production processes. 

Material quality 

Data production failures were also often attributed to materials or samples that were impure or 

contaminated. We categorize this type of failure as material quality failure. Wet Lab, which 

studied fluid materials, faced more contamination problems. Protocols such as using gloves, lab 
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cleaning procedures, and rinsing glassware to remove residuals were often followed in the Wet 

Lab. In addition, material quality failure could be detected during or after experiments using 

available heuristics such as unusual color, smell, or texture (Barley and Bechky 1994; Bruyninckx 

2020) or catching unusual characterization outputs (Lynch 1985). These abilities to make use of 

cues embedded in their production setting were accumulated through their previous encounters 

with similar failures and their recollection of how local materials were prepared and handled. 

Interestingly, special attention was often given to purchased materials as their impurities could 

cause problems such as replication failure.  

Nature  

Sometimes, our participants attributed data production failures to their lack of understanding of 

the material or the production processes, which we categorize as nature. For example, having 

repeatedly modified the procedure, and checked the material quality and instrument, one 

participant from Wet Lab attributed the failure to his lack of full understanding of a complex 

interaction between material systems and his instrument. We find this nature category interesting 

because making this attribution and addressing it could reveal unexpected findings, such as 

research fraud, as in the case of the infamous Schön scandal (Reich 2009), or serendipitous 

discoveries, such as the discovery of the Pulsar (Burnell 2004).  

Don’t care  

In some cases, when our participants could not come up with failure attributions, instead of 

attributing the failure to nature (meaning that there was an underlying but as yet not well 

understood natural phenomenon causing the failure), they would attribute the failure to unknown 

technical difficulties, where understanding the difficulty would not significantly expand their 

understanding of science. We categorize this type of failure as don’t care. Our participants often 

ignore this type of failure (meaning they did not try to find the cause) or apply heuristics to solve 

them, seeing little value in understanding their exact cause. Don’t care attribution was more often 

observed from failure-generated tasks that were familiar to our participants, where these types of 

failures were often solved by applying available heuristics. This contrasts with the higher 

frequency of nature attribution from unfamiliar tasks (see Figure 1).  



25 
 

 

 

4.3 Attribution behaviour   

We now discuss how our participants searched for failure attributions. While any failure 

attributions could be selected (as attribution space) and tested, we observed a general behavioral 

pattern from their search. We classify this observed pattern into internal versus external 

attributions. We define an attribution as internal when a scientist considers the failure to be 

associated with solutions over which she has complete autonomy. A solution is under a scientist’s 

autonomy to the extent that she does not manipulate or question the assumptions of the initial 

conditions of the experiment, such as the quality of a purchased sample, instrument, and even the 

validity of previous findings. On the other hand, external attribution considers solutions that 

question these initial assumptions. For example, a scientist questioning the quality of the material 

she made would be classified as internal. Meanwhile, attribution would be categorized as external 

when she questions the quality of the materials made by collaborators or manufacturers. Similarly, 

questioning the functioning of lab-built instrument systems would be internal, while questioning 

the instrument parts made by a manufacturer would be external. Also, questioning the procedures 

developed by a scientist would be internal, while questioning procedures developed elsewhere 

would be external.  

Internal attribution: Is it my fault?  

Figure 2 illustrates how often our participants started their search with internal versus external 

attributions. As seen from both subplots in Figure 2, most searches started with internal 

attributions. Examples include lab members casually blaming their “bad hands” after failing 

difficult procedures. Some participants would spend days or months trying to replicate published 

methods. Our participants rarely questioned the credibility of known procedures or purchased 

instruments immediately after failure. They often instead reflected on the range of problems and 

solutions over which they had control. Moreover, many of these troubles were not initially reported 

to their supervisor. This internal attribution would sometimes lead to wasteful search when 

externaly attribution would have been more appropriate. For example, one participant from Wet 
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Lab was troubleshooting a recently purchased characterization instrument that was producing 

molecular weight distribution that resembled those coming from highly contaminated material. He 

spent over six months troubleshooting the instrument, trying various solutions within his control, 

then receiving help from the instrument maker over the phone, before deciding that the instrument 

needed to be sent back to the manufacturer.  

External attribution: Is it the instrument? Is it the materials that I got from others? Could it be 

nature?  

External attribution refers to failure attributions whose problems and solutions cannot be directly 

resolved by the problem-solver. The external attribution may question the validity of procedures, 

materials, and instruments that would otherwise be taken as valid under an internal search. 

Examples include questioning the purity of materials obtained from collaborators, doubting the 

reliability of off-the-shelf instruments, or suspecting the feasibility of production procedures from 

published works. We provide an example from one member of Wet Lab who struggled to replicate 

her former lab members’ synthesis procedure.  

“I first followed the procedure from a recent publication, but it never worked... I was able to go 

back to earlier publications. I ended up with an earlier lab member’s dissertation. They do provide 

a “synthesis” chapter. This was from one of our former post-doc’s dissertations. Replication didn’t 

work out from the beginning. I worked with the post-doc and tried to follow her method.  But I was 

getting lots of sizes (of the molecule). I could wash (separate) it to get it monodisperse.  Eventually, 

I checked the guy who came before her, and saw his method.  He did it differently. Then, no 

problem. I could always get the exact size.”  

Our participant first tried to replicate a former lab member’s chemical synthesis. When it failed, 

she began to dig into the literature, searching for useful methods sections among cited publications. 

Even after reading a former lab member’s dissertation, she could not produce the material with a 

desirable size distribution, until finally meeting another previous postdoc in person, who was able 

to demonstrate the synthesis procedure that “worked” for her research. This example illustrates 

how our participants often spent significant time experimenting with various parameters within 

their control before ultimately questioning the validity of the materials, procedures, or instruments. 



27 
 

The external attribution is also where the nature failure category may be considered. For instance, 

in one case, repeated failure followed by considering nature led to the discovery of a new material 

property. This is also the path by which published findings may come to be questioned by the 

scientific community after repeated failures to replicate: in other words, after a series of internal 

attributions and problem solving searches do not succeed, the attribution may change to nature, in 

this case meaning that the published result is not in fact valid (Reich 2009). 

Situated knowledge and attribution 

Scientists often incorporated situated knowledge in the attribution process.  For example, knowing 

the age of a particular bottle of a supply chemical could be an important clue as to whether material 

quality was or was not a reasonable attribution, as was knowledge of the supplier’s quality control 

reputation. Similarly, knowing the maintenance and modification history of a specific piece of 

equipment could be an important clue to the instrument versus instability attribution (Kusterer 

1978; Orr 1996). One example from the Dry Lab member’s early detection of a flawed sample can 

exemplify the role of situated knowledge in the attribution search process.  

“Meanwhile, she showed me a “control” PMMA, which had undergone all procedures except the 

infiltration with TMA (Trimethylaluminium). Showing how “hazy” her PMMA sample is, she 

explained that the haziness indicated inadequate drying of the sample, contrasting with the 

"yellowish" appearance of correctly infiltrated material. When asked about her diagnostic 

process, she answered: ‘it took a while to figure it out, although I suspected that. I suspected either 

the PMMA wasn’t dry enough or TMA was coming out in the middle of the process and meeting 

water. I tried both and figured it out eventually. The drying process that we were using was 

sufficiently dry for thin-film but not this material (around 0.5 mm thin).’” 

In this example, she was able to identify that her PMMA (Polymethyl Methacrylate) sample was 

not correctly infiltrated by observing its hazy appearance, which was different from the expected 

“yellowish” color. This situated understanding of the material was a result of a close familiarity 

with the PMMA material system in her lab setting, developed over time through numerous 

observations and experiments, during which she was able to recognize that the standard drying 

process from her instrument, while adequate for thin films, was insufficient for thicker materials 
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like her sample. Thus, the attribution process, and therefore the problem solving path, may depend 

heavily on situated knowledge, which would vary across lab settings. 

 

The observed difference in the internal versus external attributions  

Our observation indicates that most attribution searches begin with internal attribution. Out of 38 

instances of failure observed during field visits, only 5 considered that the cause of the failure 

could be found by searching externally (Figure 2.A). Even after pulling every instance of failures, 

including those outside our field visits (n=82), we find that most of the search started with internal 

attribution (Figure 2.B). Thus, our evidence strongly indicates that scientists search for the causes 

of the failure internally. In the following section, we discuss potential explanations for this 

structuring of the search path.  

 

  

Figure 2. Internal versus external attributions. Note that subplot (A) corresponds to a relative frequency for 
each attribution behavior from the first failure entry, and subplot (B) corresponds to a relative frequency 
for each attribution behavior from the entire failure encounter. There were a total of 82 recorded data 
production failure entries. Of them, 38 instances were observed during our field visits. 

Internalization of failure  

Our evidence suggests that scientists tend to start their search within internal attributions, which 

raises questions about the internalization of failure in science. We provide several perspectives 

that could explain this tendency. One perspective is that the internalization may simply be 
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reflecting scientists’ reaction to strong priors about existing methods or findings. This Bayesian 

learning approach would suggest that prior beliefs influence the amount of evidence required to 

refute the existing findings (Dunbar 1995; Klahr 2002). Thus, unexpected outcomes from 

experiments would be perceived as inadequately executed experiments when the methods and 

findings are well-established.  

It is also possible that the internalization of failure, specifically, accepting failures as part of their 

routine activities (Delamont and Atkinson 2001; Wylie 2019), maybe a cultural trait that scientists 

acquired through the enculturation process during their early training. According to this 

perspective, scientists are socialized to accept that real-world science is messy and that data 

production failure may be a default outcome. While this enculturation is partly intended to remedy 

the emotional distress associated with repeated failure during the training period, the consequence 

would be that scientists internalize data production failure. From this perspective, it also follows 

that reaching out for external help (such as reporting to their supervisor) before exhausting internal 

attributions would signal their incompetence. The internalization of failure could also reflect the 

enormous trust that scientists put into a system that governs the production of science through  

“organized skepticism” (Merton 1973). For example, in the face of data production failure, 

questioning the validity of published methods before carefully considering internal attributions 

may cause unwarranted reputation damage to the original authors and communities of scientists 

who have endorsed and relied on these methods for their research. While validating these 

perspectives is beyond the scope of this paper, what is clear from our observations is that scientists 

tend to internalize data production failure. The extent to which this behavior is unique to scientists 

is an open question. It also invites incorporation of attribution theory from social psychology 

literature, which examines the perceived causes of one's own behavior (Kelley and Michela 1980).  

4.4 Selecting solutions  

A range of solutions can be considered with respect to the attribution space constructed by our 

participants. We consider this set of solutions as a solution space. Table 1 reports eight different 

categories and descriptions based on attempted solutions observed from our field notes. These 

solutions are: craft, trial-and-error, field, sub-experiment, instrument,  material, peer, perfunctory. 

Before describing these solutions in detail, we want to point out that our participants often applied 
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solutions reflecting two distinct behaviors. Firstly, some failure attributions are familiar enough 

that they had read-to-apply solutions. They would apply solutions immediately without further 

investigating the failure. Inspired by problem-sovling literature (Newell and Simon 1972), we 

consider this behavior as a heuristic approach. Examples of a heuristic approach include ordering 

new parts for the failed instrument or purifying contaminated samples based on their available 

heuristics. Thus, these problems constitute cases where failures already have ready-made solutions 

from the perspective of our participants. When a heuristic approach is not available, our 

participants would generate additional information by constructing and iterating through sub-

problems (Simon and Newell 1971). One reason for this iteration is that our participants would 

often construct multiple failure attributions associated with a single cause of the failure. Thus, 

narrowing down potential attributions would often require further information, which could be 

done by deliberately devising a sub-experiment or consulting their peers (see Table 1). We 

categorize this type of solution approach as information-gathering. Our observations suggest that 

the solutions from Table 1 could be be applied in either a heuristic or information-gathering 

approach, or both. It is important to note that more than one type of solution was often used to 

solve a single data production failure. 

Table 1. Solution space 
Solutions Descriptions 

Craft  Craft solutions involve technical and situated knowledge. They 

often facilitate identifying other solutions. Craft solutions can 

include domain-specific method (Simon, Langley and Bradshaw 

1981) and situated knowledge (Orr 1996; Suchman 2006; Tyre and 

Von Hippel 1997). 

Trial-and-

error 

Trial-and-error are unstructured or sometimes random attempts to  

modify or repeat procedures or change materials to solve the failure.  

Field Field involves the use of domain-specific knowledge involving a 

deep structural and scientific understanding behind data production.  
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Sub-

experiment 

Sub-experiment is an additional experiment used to generate further 

information to identify failure attributions.   

Instrument Instrument solutions include sending out instruments to 

manufacturers or ordering new parts.  

Material Material solution involves modifying or using new material.  

Peer Peer solutions involve asking for advice and feedback from 

colleagues or advisors. Their information could either expand or 

narrow down both attribution and solution space.   

Perfunctory  Perfunctory solutions are a type of heuristics that are generally 

known to work without any logical explanation.  

 
Table 2. Solutions by task familiarity and attributions 

 Internal Attribution External Attribution 

Familiar 

Task 

 

 

 

 

Unfamiliar 

Task 
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Familiarity, search, and solutions  

Instead of providing a detailed description of every application of each solution, we highlight a 

selection of notable examples. Table 2 illustrates the distribution of the solutions described in 

Table 1, by familiarity with tasks and attribution behaviors. Craft solutions, by far, were the most 

common and widely used solutions (see Table 2). Craft solutions involved our participants’ 

technical and situated understanding of procedures, materials, instruments, and their complex 

interactions. Other than its self-explanatory role of making data production more efficient and 

reliable, craft knowledge helped our participants make sense of and use information generated 

from applying other solutions. In other words, craft knowledge facilitated the use of heuristics 

apporaches. This was particularly evident when one participant from Dry Lab was troubleshooting 

the reactor she had built. Upon identifying gas leaks, her craft knowledge facilitated using the 

existing protocol to identify the source of the leak. This involved devising sub-experiments to 

determine whether the leak was caused by a faulty valve, gauge, or chamber. Another example 

from Wet Lab includes our participant’s ability to quickly devise an artificial atmosphere around 

his instrument to limit the evaporation of theta solvent, which was limiting his data production.  

Trial-and-error was another common solution used by our participants (see Table 2). Interestingly, 

this solution was more often sought when a participant’s attribution space was depleted. For 

example, simply repeating a tricky chemical synthesis was a common trial-and-error solution 

from our participant who attributed the failure internally to familiar data production failure (as 

shown in the upper-left corner of Table 2). Note that this participant considered various potential 

attributions and solutions for the failure before resorting to trial-and-error. This behavior is 

consistent with the prior experimental studies, indicating that repetitive behavior is more common 

with uncertainties in data quality or when working hypotheses are depleted (Gorman 1986; 

Gorman 1989; Klahr and Dunbar 1988). While our participants agreed that repetition can improve 

craft knowledge (Delamont and Atkinson 2001; Peterson 2015), understanding the mechanisms 
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behind “successful” data production was often challenging. Our field notes provide a clear 

illustration of the challenge of learning from unstable data production failures. 

“For example, cobalt is extremely difficult to replicate. We have even reached out to these authors. 

It turns out they left steps out of the description, whether it is a probe v. a bath, that you have to 

continuously bubble through nitrogen or argon.  But, if it is too high, you get frothing.  It took me 

almost one year to replicate this research. I don't know how I got it to work. What happened is 

that we changed this glassware because I broke one. And it worked after that. So, I am blaming 

this on this glassware manufacturer (laugh). The truth is it is kind of hard to explain how I got this 

right… I asked the post-doc to help.  She came and watched me and did some troubleshooting, but 

still not there.  Finally, I hit the sweet spot. Using fresh reactants. Got the argon just right…  Yes, 

I have been able to do it a couple of times.  But, I don't know for sure why it happened.”  

As discussed before, multiple solutions were often used to address data production failures. One 

example illustrates how trial-and-error, craft, and field solutions are used when searching 

for external attributions to unfamiliar data production failure (lower-right corner of Table 2). In 

this case, one member of Wet Lab searched for ideal material systems that could demonstrate the 

general applicability of his novel instrumental method, which used the speed of sound 

measurements to probe conformational changes in macromolecular solutions. Interestingly, both 

his scientific field knowledge and his situated craft knowledge of the instrument guided the search 

for the right material systems during a more than 6-month period of search, where he considered 

examining a range of macromolecules known in theory to exhibit sharp conformational changes 

(such as lysozyme) or utilizing macromolecules already familiar to the lab (such as polypeptides). 

Lastly, we discuss the perfunctory solution, which was mostly observed when our participants 

considered internal attributions to familiar data production failures (upper-left corner in Table 2). 

These are the solutions that worked before, but the scientists cannot explain how or why. Common 

examples include rebooting instruments or computer programs. For instance, one participant from 

Wet Lab resolved an optical experiment issue by restarting the instrument, which, according to 

him, was “everyone’s favorite trick.” Another example from Dry Lab shows perfunctory solutions 

applied to the instrument not reporting frequency output, which was addressed by applying two 

methods: 1) pushing down the sample holder of the chamber slightly and 2) restarting the program 
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if the first trick does not work. Interestingly, many perfunctory solutions were associated with 

failure attribution, don’t care, as they often didn’t bother to know the cause of this type of 

failure. One important attribute of the don’t care category is that it is also a situated label.  

Depending on the purpose of the experiment, knowing why a particular step fails or works may be 

constructed as critical for understanding or may be constructed as irrelevant to the ultimate goal 

of that researcher’s study. For example, in the quote above about missing information in the 

published paper, it is possible that the information was left out because monodispersion that was 

so critical to the respondent’s experiment was irrelevant to the paper author’s study. This 

distinction likely drives when perfunctory solutions are considered adequate or unsatisfactory.   

4.5 The Cycle of Doubt: A behavioral model of addressing data production failure 

The Cycle of Doubt 

Based on our observations and analyses, we present a behavioral model of how scientists address 

data production failures. We refer to this model as the “Cycle of Doubt”, to reflect the iterative 

and uncertain nature of the failure-coping process. The key concepts are familiarity, attribution 

space, attribution behavior, and solution space. Our observations suggest that solutions are seldom 

“solved” by the first attempt except for rare cases where a single heuristic approach was sufficient 

to solve the failure. More often, addressing failure involved iterations of the troubleshooting 

process illustrated in the model shown in Figure 3.  

The model starts with failure detection. Note that we are beginning with a failure identification.  

It is also an interesting question to study when a failure is detected (versus having the output pass 

through the process as “data”), or when the output is questioned and then labeled as a failure 

versus plausible data, but that is beyond the scope of this analysis.  

In our case, the data production failures were sufficiently obvious that there was little hesitation 

on the part of the scientist as to whether this was a failure or not. For example, in the case of an 

incinerated or vaporized sample that was therefore unable to be characterized, the “Is it a failure?” 

question was not raised.  This distinction highlights the extent to which interpretations of data 

production or measurement failures are themselves theory-laden. For example, if the goal of the 

experiment is to learn the conditions that would obliterate a material, then opening the chamber 
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and finding the sample gone is a success, rather than a failure.  In our case, we are taking the goal 

of the measure as given, and highlighting that the procedure produced a non-measure (no data), or 

produced measures that show that the material does not meet the requirements for inputs into the 

focal experiment.  Hence, the failure brings the experiment to a premature halt. This viewpoint is 

reinforced by the fact that in nearly all cases, the researcher did not try to develop a scientific 

explanation for the failure, but rather tried to produce the needed material/measures.  If turning it 

off and turning it on again worked, then the case was closed, and the experiment moved on. 

Hence, we begin with a failure being declared. Our findings suggest that failures are often 

identified by detecting sensory cues (color, smell, texture, etc.) or symbolic (figures, numbers, and 

charts) representations. The failures encountered by scientists can be either familiar or unfamiliar, 

depending on their prior experience with failure-generating tasks. A troubleshooting scientist then 

moves to the attribution space, where potential failure attributions would be considered. Choosing 

one of these failure attributions would be internal if a scientist perceives that the failure can be 

resolved within her autonomy. The choice would be external if a scientist perceives that the failure 

is attributed to reasons beyond her autonomy. Note there is no one-to-one correspondence between 

internal versus external attributions and the six attributions we categorized. For example, a scientist 

questioning the quality of a material she synthesized would be internal, but this attribution would 

be external if the material was made elsewhere. 

Once failure attributions are selected, a troubleshooting scientist will then apply appropriate 

solutions from the solution space. As discussed before, solutions could be selected with a heuristic 

approach or with an information-gathering approach, depending on the condition of data 

production failure. After applying solutions, a troubleshooting scientist will evaluate the outcome, 

possibly altering her failure representation. By this point, a troubleshooting scientist can move on 

when failures are resolved or by ignoring the failure. Otherwise, she would repeat the process.  
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Figure 3. The Cycle of Doubt: A behavioral model of addressing data production failure 

It is important to note that the Cycle of Doubt is shaped by the social and physical context in which 

data production failures occur. This context is shown in the upper-left corner of Figure 3. This 

region has different levels, including individual knowledge, laboratory knowledge, and outside 

knowledge. Arrows that connect this region to each stage of the Cycle of Doubt process represent 

the effects of social and physical context on the failure-solving process. Arrows that go back and 

forth between them indicate knowledge spillover – i.e., the construction and the shareability of the 

information generated within the lab. The learning from failure is illustrated by a dotted arrow that 

travels from the observed outcome to the context region to reflect often ambiguous feedback 

produced in the Cycle of Doubt process.  

4.6 Conditions for successful failure-solving process  

The cycle of doubt model emphasizes the iterative nature of reconstructing failure representations. 

However, our observations suggest that useful information is often scarce at each stage of the 

model due to two different types of uncertainties. Firstly, information could be scarce when 

exploring unfamiliar tasks, as making sense of the information produced would be difficult. 

Secondly, even familiar tasks often involve unstable data production processes, which make it 

difficult to rely on the information generated. Interestingly, successful failure-solving scientists 
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tend to iterate the cycle faster because they can generate useful information faster. We discuss two 

interesting characteristics related to the ability to generate useful information. 

One key aspect of successful failure-solving processes often involves quickly devising the right 

sub-experiments. This requires a combination of both craft and formal field knowledge around 

data production. Below, we provide an example of the application of a sub-experiment from Dry 

Lab to identify the source of the failure in a chemical reactor.  

“To figure out it was leaking, I pumped it down and isolated the chamber… I measure this in an 

isolated state to see how much pressure is increasing. So, if it is increasing, there is probably a 

leak. But the problem with the leak is that it could be due to the atmospheric gas coming in, but it 

also could be water outgassing from the chamber wall. So, you have to wait to see if the increase 

is like a slope or like a plateau. The slope is a leak, and the plateau is water. If it is water, you can 

heat and wait. So, before I run the experiment every time, I check that. And a lot of times, I have 

to wait a while to get the water out. [She had several troubleshooting programs on her computer]” 

Because of the frequent leaks from the chamber, she developed several customized programs to 

identify the source of the problem. These programs are situated around her specific instrument and 

her tasks, so they may be irrelevant to other instruments that have the same function. The example 

also shows how her scientific knowledge is used to identify different patterns of pressure output 

data (slope versus plateau). The programs she used and her ability to quickly identify the pattern 

became available heuristics, which was possible because she had both situated and field knowledge 

of data production. However, this type of heuristic was not always available among data 

production tasks that were highly unstable, such as those performed in an “open system.” Because 

systematic ways to generate codified data were physically challenging, learning from failures was 

extremely difficult in such settings. Thus, the ease of solving data production failures may be 

highly dependent on the task environment.   

The other aspect of successful failure-coping processes is the ability to make use of information 

generated from the lab. We found that labs with high overlap in data production tasks enjoyed 

high-spillover of useful information. For example, members of Dry Lab would often share lab-

built chemical reactors. This overlap allowed some members of Dry Lab to use the information 
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generated by other lab members to readjust their attribution space without having to run their own 

sub-experiments. The shared situated knowledge about specific instruments allowed some 

participants to rapidly produce and share useful information to quickly solve data production 

failures. Therefore, we can conclude that the conditions for a successful failure-solving process 

require the ability to generate useful information. This ability can be influenced by the level of 

situated knowledge, the task environment and the lab organization of data production work. 

 

5. Discussions and Conclusions 

In this paper, we presented ethnographic observations of an overlooked but critical dimension 

of the work of laboratory scientists – the frequent failure to produce usable data from their 

experiments. Our paper suggests that data production failure is common and that scientists 

consider a range of attributions and solutions following a fairly structured pattern. Specifically, we 

find that scientists tend to internalize failures by attributing the failure to themselves before 

attributing the failure to those outside of their control. While understanding the source of 

internalization of failure in science is beyond the scope of this paper, we find this to be an 

interesting characteristic as it may be a critical site to understand how data production can be 

accelerated.  

Our findings highlight how scientists spend significant time troubleshooting failures in data 

production, often in repetitive, manual, and unpredictable ways. Failures frequently stem from 

instabilities in the production process, requiring scientists to monitor instruments and react to 

unexpected breakdowns continuously. Even in well-controlled systems, our participants often had 

to spend hours observing equipment for signs of failure. These inefficiencies raise a broader 

question: to what extent can automation and artificial intelligence (AI) help mitigate these issues? 

On the one hand, the advancements in deep learning in the computational sciences (Ramprasad et 

al. 2017; Tshitoyan et al. 2019) can help scientists narrow down large combinatorial spaces to 

avoid dead-end searches, as a significant amount of time is often lost in finding the appropriate 

material systems. However, our findings suggest that the bulk of data production failures occurred 

due to instability in the production process. Even data production under a relatively well-controlled 
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closed system often required our participants to sit around the instrument for hours to monitor 

frequent failures. One way to free scientists from “babysitting” instruments is to apply various 

analytics used in industrial sectors, such as installing general-purpose sensors that would collect 

information such as vibration, sounds, and temperature, thereby learning when failures would 

happen. As such, monitoring failure preemptively could potentially predict and reduce data 

production failures. Moreover, the explainability of algorithms used in analytics may depend on 

the purpose of data production tasks. If data production is the focus of the research, an explainable 

algorithm may be desirable, as opposed to if it is merely an intermediate step. However, due to 

similar problems posed by data production work done in open-system, we expect that the benefits 

from automation and the uses of data analytics would vary by subfield.  

Our research also highlights the significance of the organization of data production work. Useful 

information in solving data production failures was localized and situated such that only those who 

had proximate backgrounds were able to make use of information spillover. Interestingly, this 

finding contrasts with the other prominent view that suggests how a diversity of members’ 

expertise may be beneficial for problem-solving (Argote, Lee and Park 2020; Cummings 2004; 

Dunbar 1995) due to heterogeneous failure-attributions and potential solutions generated by a 

diverse background of expertise. Instead, our finding aligns with research that emphasizes the 

significance of a closed network with strong ties in work organization for transferring tacit 

knowledge (Hansen 1999).  

Meanwhile, how situated knowledge and formal scientific knowledge are put into action to address 

frequent technical problems in our paper provides an implication for the organization of work in 

science. Interestingly, the labs we observed were solely staffed by graduate students and post-docs 

whose work also involved types of troubleshooting documented by previous studies of lab 

technicians (Barley and Bechky 1994; Bruyninckx 2020; Doing 2004). Given that all members of 

the labs utilized both situational and formal scientific knowledge to address failures, we are unsure 

whether this reflects the inseparability of skills for solving problems or the lack of division of labor 

for some other reasons. Moreover, while supervisors provided essential field expertise, many 

failures were resolved without supervisors, and, furthermore, supervisors often had no solutions 

for the cases brought to them, but instead suggested paths along the Cycle of Doubt (in essence, 
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counseling, keep looking). Given that substantial graduate training involves mastering craft 

knowledge (Delamont and Atkinson 2001; Peterson 2015), it is not clear whether mastering such 

skill sets is a necessary condition for becoming an independent investigator. 

Our findings also raise important distinctions from the experimenter’s regress described by Harry 

Collins (Collins 1992; Collins 1975). While our participants frequently encountered uncertainty in 

their work, these failures differ in a few ways from the high-stakes, theory-driven failures that 

characterize experimenter’s regress. Experimenter’s regress occurs when the validity of an 

experimental result depends on the correctness of the experimental setup, but the correctness of 

the setup is itself uncertain, which leads to a circular problem where researchers must decide what 

counts as a “successful” experiment (Collins 1992). This often results in collective epistemic 

debates on whether failures stem from flawed theory, experimental or instrument design, or 

execution. In contrast, we find that data production failures in routine lab work are frequent but 

largely resolved in isolation. The social aspect of the experimenter’s regress, where failures initiate 

and become sites of negotiation, was largely absent in the cases we observed. Moreover, many 

failures in our study occur before any data is even produced, meaning they do not involve 

interpreting results but rather overcoming material and procedural challenges to generate usable 

data in the first place. In other words, much of the Cycle of Doubt happens at the individual level. 

Thus, our study suggests that non-trivial incidences of failure-coping processes are addressed. This 

raises important questions for future research: What determines whether a failure remains an 

individual task or escalates into a broader discussion? How does the tendency of scientists to 

internally attribute failure (blaming themselves) contribute to keeping the Cycle of Doubt localized 

rather than social? Also, from a practical perspective, could making failure-solving more social 

improve the efficiency of addressing common data production failures? Relatedly, could making 

problem-solving more social increase the rate of “nature” explanations, meaning the rate at which 

failure becomes a locus for advancing scientific understanding of the components of the 

experiment? Understanding these dynamics will be crucial for managing uncertainties in 

knowledge production. 

Finally, we find that generating useful information is critical for addressing data production failure 

by accelerating the Cycle of Doubt process. In this sense, having a situated understanding around 
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data production was important as field knowledge was not used in a vacuum when addressing data 

production failures. While task repetition was essential for developing a situated understanding of 

the data production, we find some data production tasks yielded insufficient information feedback 

to apply available heuristics or the guide sub-experiments. This was particularly the case for much 

of the chemical synthesis conducted in open systems. Learning from failures is difficult in such 

conditions, where some failures are often resolved by arbitrary variables, such as replacing 

equipment or reagents. In contrast, data production failures from closed systems, such as chemical 

reactors, were much more tractable as our participants were able to systematically generate sub-

experiments in relatively well-isolated conditions. Given such an apparent difference in task 

uncertainty, we expect to observe substantial field and subfield variations in managing data 

production failures (Fuchs 1992).  Overall, these results show the prevalence of data production 

failures, the importance of situated knowledge for addressing such failures, and the contextual 

contingencies that affect access to such situated knowledge.  These findings provide important 

guidance for understanding the work of science.  



42 
 

REFERENCES 
 

Argote, Linda, and Eric Darr. 2000. "2 Repositories of Knowledge in Franchise Organ-izations: 
Individual, Structural, and." The nature and dynamics of organizational capabilities 2:51. 

Argote, Linda, Sunkee Lee, and Jisoo Park. 2020. "Organizational Learning Processes and 
Outcomes: Major Findings and Future Research Directions." Management Science. 

Barley, Stephen R. 2020. Work and technological change: Oxford University Press, USA. 
Barley, Stephen R, and Beth A Bechky. 1994. "In the backrooms of science: The work of 

technicians in science labs." Work and occupations 21(1):85-126. 
Barley, Stephen R. 1988. "The Social Construction of a Machine: Ritual, Superstition, Magical 

Thinking and other Pragmatic Responses to Running a CT Scanner." Pp. 497-539 in 
Biomedicine Examined, edited by Margaret Lock and Deborah Gordon. Dordrecht: 
Springer Netherlands. 

Becker, Howard S. 1958. "Problems of inference and proof in participant observation." American 
Sociological Review 23(6):652-60. 

Becker, Howard Saul. 2002. Boys in white: Student culture in medical school: Transaction 
publishers. 

Bruyninckx, Joeri. 2020. "Somatic Vigilance and Sonic Skills in Experimental Plasma Physics." 
Science as Culture 29(3):450-73. 

Burnell, Jocelyn Bell. 2004. "So few pulsars, so few females." Science 304(5670):489-90. 
Cambrosio, Alberto, and Peter Keating. 1988. "“Going monoclonal”: Art, science, and magic in 

the day-to-day use of hybridoma technology." Social Problems 35(3):244-60. 
Campbell, Robert A. 2003. "Preparing the next generation of scientists: The social process of 

managing students." Social Studies of Science 33(6):897-927. 
Collins, H. M. 1998. "The Meaning of Data: Open and Closed Evidential Cultures in the Search 

for Gravitational Waves." American Journal of Sociology 104(2):293-338. 
Collins, H.M. 1981. "Son of Seven Sexes: The Social Destruction of a Physical Phenomenon." 

Social Studies of Science 11(1):33-62. 
Collins, H.M., and R.G. Harrison. 1975. "Building a TEA Laser: The Caprices of 

Communication." Social Studies of Science 5(4):441-50. 
Collins, Harry. 1992. Changing order: Replication and induction in scientific practice: University 

of Chicago Press. 
—. 2010a. Gravity's shadow: the search for gravitational waves: University of Chicago Press. 
—. 2010b. Tacit and explicit knowledge: University of Chicago Press. 
Collins, Harry M. 1975. "The seven sexes: A study in the sociology of a phenomenon, or the 

replication of experiments in physics." Sociology 9(2):205-24. 
Cummings, Jonathon N. 2004. "Work groups, structural diversity, and knowledge sharing in a 

global organization." Management Science 50(3):352-64. 
Cyert, Richard M, and James G March. 1963. "A behavioral theory of the firm." Englewood Cliffs, 

NJ 2(4):169-87. 
Delamont, Sara, and Pauln Atkinson. 2001. "Doctoring uncertainty: Mastering craft knowledge." 

Social Studies of Science 31(1):87-107. 
Doing, Park. 2004. "‘Lab Hands’ and the ‘Scarlet O’ Epistemic Politics and (Scientific) Labor." 

Social Studies of Science 34(3):299-323. 



43 
 

Dunbar, Kevin. 1995. "How scientists really reason: Scientific reasoning in real-world 
laboratories." The nature of insight 18:365-95. 

Fuchs, Stephan. 1992. The professional quest for truth: A social theory of science and knowledge: 
Suny Press. 

Fujimura, Joan H. 1987. "Constructingdo-Able'problems in Cancer research: Articulating 
alignment." Social Studies of Science 17(2):257-93. 

—. 1988. "The molecular biological bandwagon in cancer research: Where social worlds meet." 
Social Problems 35(3):261-83. 

—. 1992. "Crafting science: Standardized packages, boundary objects, and “translation.”." Science 
as practice and culture 168(1992):168-69. 

Gorman, Michael E. 1986. "How the possibility of error affects falsification on a task that models 
scientific problem solving." British Journal of Psychology 77(1):85-96. 

—. 1989. "Error, falsification and scientific inference: An experimental investigation." The 
Quarterly Journal of Experimental Psychology Section A 41(2):385-412. 

Granovetter, Mark S. 1973. "The strength of weak ties." American Journal of Sociology 
78(6):1360-80. 

Hackett, Edward J. 1990. "Science as a vocation in the 1990s: The changing organizational culture 
of academic science." The journal of higher education 61(3):241-79. 

Hagstrom, Warren O. 1964. "Traditional and modern forms of scientific teamwork." 
Administrative science quarterly:241-63. 

Hansen, Morten T. 1999. "The Search-Transfer Problem: The Role of Weak Ties in Sharing 
Knowledge across Organization Subunits." Administrative science quarterly 44(1):82-111. 

Harper, Douglas. 1987. Working knowledge: Skill and community in a small shop: University of 
Chicago Press. 

Jordan, Kathleen, and Michael Lynch. 1992. "3. The Sociology of a Genetic Engineering 
Technique: Ritual and Rationality in the Performance of the" Plasmid Prep"." Pp. 77-114 
in The right tools for the job: Princeton University Press. 

Keating, Peter, Alberto Cambrosio, and Michael Mackenzie. 1992. "11. The Tools of the 
Discipline: Standards, Models, and Measures in the Affinity/Avidity Controversy in 
Immunology." Pp. 312-54 in The Right Tools for the Job: Princeton University Press. 

Kelley, Harold H, and John L Michela. 1980. "Attribution theory and research." Annual review of 
psychology 31(1):457-501. 

Klahr, David. 2002. Exploring science: The cognition and development of discovery processes: 
MIT press. 

Klahr, David, and Kevin Dunbar. 1988. "Dual space search during scientific reasoning." Cognitive 
science 12(1):1-48. 

Klahr, David, and Herbert A Simon. 1999. "Studies of scientific discovery: Complementary 
approaches and convergent findings." Psychological Bulletin 125(5):524. 

Knorr-Cetina, Karin. 1981. "The Manufacture of Knowledge." 
—. 2009. Epistemic cultures: How the sciences make knowledge: Harvard University Press. 
Kuhn, Thomas S. 1962. The structure of scientific revolutions: University of Chicago press. 
Kusterer, Ken C. 1978. Know-how On The Job: The Important Working Knowledge Of"" 

Unskilled"" Workers: Westview Press. 
Latour, Bruno. 1987. Science in action: How to follow scientists and engineers through society: 

Harvard university press. 



44 
 

Latour, Bruno, and Steve Woolgar. 1979. Laboratory life: The construction of scientific facts: 
Princeton University Press. 

Lave, Jean, and Etienne Wenger. 1991. Situated learning: Legitimate peripheral participation: 
Cambridge university press. 

Lynch, Michael. 1985. Art and artifact in laboratory science: A study of shop work and shop talk 
in a research laboratory: Routledge. 

Merton, Robert K. 1957. "Priorities in scientific discovery: a chapter in the sociology of science." 
American Sociological Review 22(6):635-59. 

—. 1973. "The normative structure of science." Pp. 267-78 in The sociology of science: Theoretical 
and empirical investigations, edited by Norman W Storer: The University of Chicago Press. 

Nelson, Richard R, and Sidney G Winter. 1981. An Evolutionary Theory of Economic Change 
harvard university press. 

Newell, Allen. 1967. "Studies in problem solving; subject 3 on the crypt-arithmetic task Donald+ 
Gerald= Robert." 

Newell, Allen, and Herbert Alexander Simon. 1972. Human problem solving: Prentice-Hall 
Englewood Cliffs, NJ. 

Orr, Julian E. 1996. Talking about machines: An ethnography of a modern job: Cornell University 
Press. 

—. 1998. "Images of work." Science, technology, & human values 23(4):439-55. 
Owen-Smith, Jason. 2001. "Managing laboratory work through skepticism: Processes of 

evaluation and control." American Sociological Review:427-52. 
Peterson, David. 2015. "All that is solid: Bench-building at the frontiers of two experimental 

sciences." American Sociological Review 80(6):1201-25. 
Pinch, Trevor. 1985. "Towards an analysis of scientific observation: The externality and evidential 

significance of observational reports in physics." Social Studies of Science 15(1):3-36. 
Ramakrishnan, Venki. 2018. Gene Machine: the race to decipher the secrets of the ribosome: 

Basic Books. 
Ramprasad, Rampi, Rohit Batra, Ghanshyam Pilania, Arun Mannodi-Kanakkithodi, and Chiho 

Kim. 2017. "Machine learning in materials informatics: recent applications and prospects." 
npj Computational Materials 3(1):54. 

Ravetz, Jerome R. 1971. Scientific knowledge and its social problems: Oxford University Press. 
Reich, Eugenie Samuel. 2009. Plastic fantastic: How the biggest fraud in physics shook the 

scientific world: Macmillan. 
Ribeiro, Barbara, Robert Meckin, Andrew Balmer, and Philip Shapira. 2023. "The digitalisation 

paradox of everyday scientific labour: How mundane knowledge work is amplified and 
diversified in the biosciences." Research Policy 52(1):104607. 

Shapin, Steven, and Simon Schaffer. 1985. Leviathan and the air-pump: Hobbes, Boyle, and the 
experimental life (New in paper): Princeton University Press. 

Simon, Herbert A. 1947. Administrative behavior: Simon and Schuster. 
—. 1992. "Scientific discovery as problem solving." International Studies in the Philosophy of 

Science 6(1):3-14. 
Simon, Herbert A, Patrick W Langley, and Gary L Bradshaw. 1981. "Scientific discovery as 

problem solving." Synthese:1-27. 
Simon, Herbert A, and Allen Newell. 1971. "Human problem solving: The state of the theory in 

1970." American Psychologist 26(2):145. 



45 
 

Star, Susan Leigh. 1983. "Simplification in scientific work: An example from neuroscience 
research." Social Studies of Science 13(2):205-28. 

Suchman, Lucy. 2006. Human-Machine Reconfigurations: Plans and Situated Actions: Cambridge 
University Press. 

Tshitoyan, Vahe, John Dagdelen, Leigh Weston, Alexander Dunn, Ziqin Rong, Olga Kononova, 
Kristin A Persson, Gerbrand Ceder, and Anubhav Jain. 2019. "Unsupervised word 
embeddings capture latent knowledge from materials science literature." Nature 
571(7763):95-98. 

Tyre, Marcie J., and Eric Von Hippel. 1997. "The Situated Nature of Adaptive Learning in 
Organizations." Organization science 8(1):71-83. 

Von Hippel, Eric. 1994. "“Sticky information” and the locus of problem solving: implications for 
innovation." Management Science 40(4):429-39. 

von Hippel, Eric, and Marcie J. Tyre. 1995. "How learning by doing is done: problem identification 
in novel process equipment." Research Policy 24(1):1-12. 

Walsh, John P, and You-Na Lee. 2015. "The bureaucratization of science." Research Policy 
44(8):1584-600. 

Whalley, Peter, and Stephen R. Barley. 1997. "TECHNICAL WORK IN THE DIVISION OF 
LABOR 

STALKING THE WILY ANOMALY." Pp. 23-52 in Between Craft and Science, edited by 
Stephen R. Barley and Julian E. Orr: Cornell University Press. 

Wylie, Caitlin Donahue. 2019. "Socialization through stories of disaster in engineering 
laboratories." Social Studies of Science 49(6):817-38. 

Zuboff, Shoshana. 1988. "In the age of the smart machine." 

 


